Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38748228

RESUMO

Gastric cancer, as the fifth most frequent disease and the fourth foremost cause of cancer-related death worldwide, remains a main clinical challenge due to its poor prognosis, limited treatment choices, and ability to metastasize. Combining siRNAs to suppress lncRNA with chemotherapeutic medications is a novel treatment approach that eventually increases the therapeutic efficacy of the drug while lessening its adverse effects. This study was performed with the purpose of examining the impact of inhibiting DLGAP1-AS2 expression on gastric cancer cells' drug chemosensitivity. AGS cells were cultured as the study cell line and were transfected with an optimum dose of DLGAP1-AS2 siRNA and then treated with oxaliplatin. Cell viability was examined using the MTT technique. Apoptosis and cell cycle were evaluated using Annexin V/PI staining and flow cytometry. Later, the scratch test was conducted to investigate the ability of cells to migrate, and the inhibition of the stemness of AGS cells was further investigated through the colony formation method. Finally, the qRT-PCR technique was used to assess the expression of Bax, Bcl-2, Caspase-3, p53, MMP-2, and CD44 genes. The MTT test indicated the effect of gene therapy with siRNA and oxaliplatin in combination reduced the chemotherapy drug dose to 29.92 µM and increased AGS cells' sensitivity to oxaliplatin. Also, the combination therapy caused a significant increase in apoptosis. However, it reduced the stemness feature, the rate of cell viability, proliferation, and metastasis compared to the effect of each treatment alone; the results also showed the arrest of the cell cycle in the Sub G1 phase after the combined treatment and a further reduction in the number and size of the formed colonies. Suppressing the expression of lncRNA DLGAP1-AS2 by siRNA followed by treatment with oxaliplatin can be utilized as an effective and new therapeutic technique for gastric cancer therapy.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38587542

RESUMO

In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.

3.
Breast Cancer Res ; 26(1): 57, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553754

RESUMO

Breast cancer continues to pose a substantial worldwide health concern, demanding a thorough comprehension of the complex interaction between cancerous cells and the immune system. Recent studies have shown the significant function of exosomes in facilitating intercellular communication and their participation in the advancement of cancer. Tumor-derived exosomes have been identified as significant regulators in the context of breast cancer, playing a crucial role in modulating immune cell activity and contributing to the advancement of the illness. This study aims to investigate the many effects of tumor-derived exosomes on immune cells in the setting of breast cancer. Specifically, we will examine their role in influencing immune cell polarization, facilitating immunological evasion, and modifying the tumor microenvironment. Furthermore, we explore the nascent domain of exosomes produced from immune cells and their prospective involvement in the prevention of breast cancer. This paper focuses on new research that emphasizes the immunomodulatory characteristics of exosomes produced from immune cells. It also explores the possibility of these exosomes as therapeutic agents or biomarkers for the early identification and prevention of breast cancer. The exploration of the reciprocal connections between exosomes formed from tumors and immune cells, together with the rising significance of exosomes derived from immune cells, presents a potential avenue for the advancement of novel approaches in the field of breast cancer therapy and prevention.


Assuntos
Neoplasias da Mama , Exossomos , Neoplasias , Humanos , Feminino , Neoplasias da Mama/patologia , Exossomos/patologia , Estudos Prospectivos , Comunicação Celular , Microambiente Tumoral
4.
Clin Transl Oncol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512448

RESUMO

Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.

5.
Iran J Basic Med Sci ; 27(4): 475-484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419894

RESUMO

Objectives: Colorectal cancer (CRC) remains a major health concern worldwide due to its high incidence, mortality rate, and resistance to conventional treatments. The discovery of new targets for cancer therapy is essential to improve the survival of CRC patients. Here, this study aims to present a finding that identifies the STAT6 oncogene as a potent therapeutic target for CRC. Materials and Methods: HT-29 CRC cells were transfected with STAT6 siRNA and treated with 5-fluorouracil (5-FU) alone and combined. Then, to evaluate cellular proliferation and apoptosis percentage, MTT assay and annexin V/PI staining were carried out, respectively. Moreover, the migration ability of HT-29 cells was followed using a wound-healing assay, and a colony formation assay was performed to explore cell stemness features. Gene expression was quantified via qRT-PCR. Afterward, functional enrichment analysis was used to learn in-depth about the STAT6 co-expressed genes and the pathways to which they belong. Results: Our study shows that silencing STAT6 with small interfering RNA (siRNA) enhances the chemosensitivity of CRC cells to 5-FU, a commonly used chemotherapy drug, by inducing apoptosis, reducing proliferation, and inhibiting metastasis. These results suggest that combining 5-FU with STAT6-siRNA could provide a promising strategy for CRC treatment. Conclusion: Our study sheds light on the potential of STAT6 as a druggable target for CRC cancers, the findings offer hope for more effective treatments for CRC patients, especially those with advanced stages that are resistant to conventional therapies.

6.
Sci Rep ; 14(1): 3114, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326326

RESUMO

The misregulation of long non-coding RNAs (lncRNAs) is related to the progressive evolution of various human cancers, such as Breast cancer (BC). The role of lncRNA B4GALT1-AS1 has been investigated in some human cancers. Therefore, studying B4GALT1-AS1 expression was aimed for the first time in the tumor and marginal tissues of BC in this study. The cancer genome atlas (TCGA) database was utilized to evaluate the relative expression of B4GALT1-AS1 in BC and other cancers. RNA was extracted from twenty-eight paired BC and marginal tissues, and cDNA was synthesized. The quantitative expression level of B4GALT1-AS1 was evaluated using real-time PCR. The bioinformatics analyses were performed to identify co-expression genes and related pathways. B4GALT1-AS1 was significantly downregulated in BC specimens compared to tumor marginal samples. The TCGA data analysis confirmed the downregulation of B4GALT1-AS1 in BC. The bioinformatics analysis discovered the correlation between 700 genes and B4GALT1-AS1 and identified GNAI1 as the high degree gene which was positively correlated with B4GALT1-AS1 expression. It seems B4GALT1-AS1 provides its function, at least partly, in association with one of the hippo pathway components, YAP, in other cancers. This protein has the opposite role in BC and its loss of function can result in poor survival in BC. Further research is needed to investigate the interaction between B4GALT1-AS1 and YAP in various subtypes of BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Baixo/genética , MicroRNAs/genética , Via de Sinalização Hippo , Neoplasias/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral
7.
Sci Rep ; 13(1): 21906, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081950

RESUMO

Gastric cancer (GC) is a leading cause of mortality for many people. Cancer's initiating factors are poorly understood. miR-21 has a crucial function in several malignancies, particularly GC. Furthermore, it has been shown that miR-21 is critical for the emergence and advancement of GC. This work intends to identify new genes which expression is associated with the activity of mir-21 in GC and to investigate the effect of downregulation of mir-21 on these genes and gastric tumorigenesis. We utilized the gene expression profiles of GCs from an Array database (GSE13911) from the Gene Expression Omnibus (GEO) dataset to find differentially expressed genes (DEGs) between control and gastric cancer groups. Using weighted gene correlation network analysis (WGCNA) in R, the Gene co-expression network was reconstructed. The microRNA-mRNA network was then reconstructed using the miRWalk database, and by investigating the microRNA-mRNA network, the genes that have an association with mir-21 were found. To implement the functional investigation, MKN and AGS cell lines were transfected with anti-miR-21 next. Subsequently, MTT proliferation was utilized to assess the cell's vitality. qRT-PCR was then used to evaluate the anticipated levels of gene expression in both GC cell lines. This study discovered and predicted CCL28, NR3C2, and SNYPO2 as the targets of miR-21 (GC), which are downregulated through gastric tumorigenesis, showing great potential as therapeutic and diagnostic targets. The suppression of miR-21 in gastric GC cells led to the inhibition of cell proliferation and decreased expression of CCL28, NR3C2, and SNYPO2 genes. This study established that miR-21, via downregulating these genes, contributes significantly to the development of GC. In addition, systems biology techniques identified CCL28, NR3C2, and SNYPO2 genes as possible GC surveillance and therapy components.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , MicroRNAs/metabolismo , RNA Mensageiro/uso terapêutico , Neoplasias Gástricas/patologia , Biologia de Sistemas
8.
Mol Biol Rep ; 49(9): 8741-8752, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35988102

RESUMO

BACKGROUND: Curcumin, a polyphenol compound derived from the Curcuma longa L, and crocin, a hydrophilic carotenoid from Crocus Sativus Linnaeus, are traditionally used in food preparations in many countries and could act as chemopreventive compounds against several diseases, including cancer. In this study, the synergistic effect of curcumin and crocin was investigated for the first time on inducing apoptosis and suppressing colorectal cancer cells (SW-480 cell line). METHODS AND RESULTS: MTT, Annexin V-FITC/PI, and DAPI staining tests were employed to evaluate cell viability and apoptosis induction, respectively. The combined effect of curcumin and crocin on the expression of genes involved in apoptosis and proliferation was quantified using real-time PCR. The combination therapy effect on cell cycle progression was also evaluated by flow cytometry. Based on the obtained results, curcumin and crocin treatment could cooperatively reduce cell viability and induce apoptosis in SW-480 cells by modulating the expression of Bax, Bcl-2, Caspase-3, Caspase-8, Caspase-9, Jak2, Stat3, and Akt1 genes. Besides, curcumin and crocin were able to synergistically increase the cell cycle arrest at the sub G1 phase, induce autophagy and decrease the clonogenic ability of SW-480 cells. CONCLUSIONS: These results suggested that curcumin and crocin combination could be considered a more effective therapeutic strategy for inhibiting colorectal cancer.


Assuntos
Neoplasias Colorretais , Curcumina , Apoptose , Carotenoides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Curcumina/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA