Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mar Environ Res ; 202: 106742, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39265326

RESUMO

The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in Grateloupia turuturu and Chondrus ocellatus. Difference of surface characteristics between G. turuturu and C. ocellatus may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of C. ocellatus was higher than that of G. turuturu. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of C. ocellatus. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. G. turuturu was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.

2.
mBio ; 15(8): e0078224, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953639

RESUMO

Copious amounts of methane, a major constituent of greenhouse gases currently driving climate change, are emitted by livestock, and efficient methods that curb such emissions are urgently needed to reduce global warming. When fed to cows, the red seaweed Asparagopsis taxiformis (AT) can reduce enteric methane emissions by up to 80%, but the achieved results can vary widely. Livestock produce methane as a byproduct of methanogenesis, which occurs during the breakdown of feed by microbes in the rumen. The ruminant microbiome is a diverse ecosystem comprising bacteria, protozoa, fungi, and archaea, and methanogenic archaea work synergistically with bacteria to produce methane. Here, we find that an effective reduction in methane emission by high-dose AT (0.5% dry matter intake) was associated with a reduction in methanol-utilizing Methanosphaera within the rumen, suggesting that they may play a greater role in methane formation than previously thought. However, a later spike in Methanosphaera suggested an acquired resistance, possibly via the reductive dehalogenation of bromoform. While we found that AT inhibition of methanogenesis indirectly impacted ruminal bacteria and fermentation pathways due to an increase in spared H2, we also found that an increase in butyrate synthesis was due to a direct effect of AT on butyrate-producing bacteria such as Butyrivibrio, Moryella, and Eubacterium. Together, our findings provide several novel insights into the impact of AT on both methane emissions and the microbiome, thereby elucidating additional pathways that may need to be targeted to maintain its inhibitory effects while preserving microbiome health and animal productivity. IMPORTANCE: Livestock emits copious quantities of methane, a major constituent of the greenhouse gases currently driving climate change. Methanogens within the bovine rumen produce methane during the breakdown of feed. While the red seaweed Asparagopsis taxiformis (AT) can significantly reduce methane emissions when fed to cows, its effects appear short-lived. This study revealed that the effective reduction of methane emissions by AT was accompanied by the near-total elimination of methane-generating Methanosphaera. However, Methanosphaera populations subsequently rebounded due to their ability to inactivate bromoform, a major inhibitor of methane formation found in AT. This study presents novel findings on the contribution of Methanosphaera to ruminal methanogenesis, the mode of action of AT, and the possibility for complementing different strategies to effectively curb methane emissions.


Assuntos
Metano , Rúmen , Animais , Metano/metabolismo , Bovinos , Rúmen/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Microbioma Gastrointestinal , Microbiota , Archaea/metabolismo , Archaea/classificação , Archaea/genética , Alga Marinha/metabolismo , Rodófitas/metabolismo , Ração Animal/análise , Fermentação
3.
Aquat Toxicol ; 261: 106609, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315338

RESUMO

Plastics are the most abundant marine litter in the world's oceans and can be degraded into micro-plastics. These emerging pollutants negatively affect marine organisms, but little is known on the effects on macroalgae. In this study, we investigated the effects of micro-plastics on two species of red algae: Grateloupia turuturu and Chondrus sp. Grateloupia turuturu has a slippery surface while Chondrus sp. has a rough surface. Different surface characteristics of these macroalgae may affect adherence of micro-plastics. Both species were exposed to 5 different concentrations (0, 20, 200, 2000 and 20,000 ng/L) of polystyrene microspheres. Adherence capacity, accumulating micro-plastics on the surface was higher for Chondrus sp. than G. turuturu. Chondrus sp. at 20,000 ng/L only showed a decrease in growth rate and photosynthesis activity, and an increase of reactive oxygen species (ROS). However, G. turuturu was not significantly affected by micro-plastics at all tested concentrations. Shaded light and inhibition of gas flow by adhered micro-plastics may be a reason for the reduction of growth and photosynthesis and production of ROS. Based on this result, the toxic effects of micro-plastics appear to be species specific, dependent on the adherence capacity of macroalgae.


Assuntos
Chondrus , Rodófitas , Alga Marinha , Poluentes Químicos da Água , Plásticos , Microplásticos , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade
4.
Harmful Algae ; 123: 102402, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894208

RESUMO

The response of seaweeds to environmental stressors can be population-specific, and be related to the regime of their habitats. To explore the growth and physiological responses of Ulva prolifera, two strains of this alga (Korean and Chinese strains) were studied under an interaction of temperature (20 and 25 °C), nutrients (low nutrients: 50 µM of nitrate and 5 µM of phosphate; high nutrients: 500 µM of nitrate and 50 µM of phosphate) and salinity (20, 30 and 40 psu). The lowest growth rates of both strains were observed at 40 psu of salinity, independent of temperature and nutrient levels. At 20 °C and low nutrients condition, the carbon: nitrogen (C: N) ratio and growth rate in the Chinese strain were increased by 31.1% and 21.1% at a salinity of 20 psu in comparison to the salinity of 30 psu, respectively. High nutrients decreased the ratio of C:N in both strains with increasing tissue N content. At the same time, high nutrients also increased soluble protein and pigments contents, as well as photosynthetic and growth rates in both strains at the same salinity levels at 20 °C. Under 20 °C and high nutrients conditions, the growth rates and C:N ratio of both strains were significantly decreased with increasing salinity. The pigment, soluble protein and tissue N showed an inverse trend with the growth rate at all conditions. Moreover, the higher temperature of 25 °C inhibited the growth in both strains regardless of nutrients levels. The temperature of 25 °C enhanced the contents of tissue N and pigments in the Chinese strain only at the low nutrients level. The interaction of high nutrients and 25 °C led to the accumulation of tissue N and pigment contents in both strains under all salinity conditions compared to the 20 °C and high nutrients level. The temperature of 25 °C and high nutrients decreased the growth rate in the Chinese strain at both salinities of 30 and 40 psu more than the 20 °C, and low nutrients level at the same salinity. These results suggest that the Ulva blooms caused by the Chinese strain were more impacted at hypo-salinity levels compared to the Korean strain. Eutrophic or high nutrients level enhanced the salinity tolerance in both strains of U. prolifera. There will be a decline of U. prolifera blooms of the Chinese strain at hyper-salinity levels.


Assuntos
Ulva , Temperatura , Ulva/fisiologia , Tolerância ao Sal , Nitratos/metabolismo , Nutrientes , Fosfatos/metabolismo
5.
J Appl Phycol ; 34(5): 2551-2563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033835

RESUMO

Saccharina latissima (sugar kelp) is one of the most widely cultivated brown marine macroalgae species in the North Atlantic and the eastern North Pacific Oceans. To meet the expanding demands of the sugar kelp mariculture industry, selecting and breeding sugar kelp that is best suited to offshore farm environments is becoming necessary. To that end, a multi-year, multi-institutional breeding program was established by the U.S. Department of Energy's (DOE) Advanced Research Projects Agency-Energy (ARPA-E) Macroalgae Research Inspiring Novel Energy Resources (MARINER) program. Hybrid sporophytes were generated using 203 unique gametophyte cultures derived from wild-collected Saccharina spp. for two seasons of farm trials (2019-2020 and 2020-2021). The wild sporophytes were collected from 10 different locations within the Gulf of Maine (USA) region, including both sugar kelp (Saccharina latissima) and the skinny kelp species (Saccharina angustissima). We harvested 232 common farm plots during these two seasons with available data. We found that farmed kelp plots with skinny kelp as parents had an average increased yield over the mean (wet weight 2.48 ± 0.90 kg m-1 and dry weight 0.32 ± 0.10 kg m-1) in both growing seasons. We also found that blade length positively correlated with biomass in skinny kelp x sugar kelp crosses or pure sugar kelp crosses. The skinny x sugar progenies had significantly longer and narrower blades than the pure sugar kelp progenies in both seasons. Overall, these findings suggest that sugar x skinny kelp crosses provide improved yield compared to pure sugar kelp crosses. Supplementary Information: The online version contains supplementary material available at 10.1007/s10811-022-02811-1.

6.
Sci Rep ; 12(1): 11878, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831413

RESUMO

Sargassum horneri is a major bloom forming species in Korea and China. It is important to find a way to utilize the huge biomass of Sargassum horneri in the region. Seaweed-derived biostimulants are primarily derived from brown algae and are known to improve terrestrial crop growth and tolerance to abiotic stresses. Neopyropia yezoensis is the most important seaweed cultured species in Korea, and research is required to increase heat resistance as a solution against climate change. In this study, various extraction methods were used to obtain Sargassum horneri extract, and it was applied to Neopyropia yezoensis to evaluate the effect on physiological activity. Metabolites of Sargassum horneri were extracted by using four different methods: boiling (SBE), soaking (SSE), autoclaving (SAE) and ethanol (SEE). The SBE, SSE and SAE derived extracts showed increased tolerance to high-temperature stress that had inhibited the growth of Neopyropia yezoensis, and show improved growth compared to the control group. The SBE and SSE extraction methods improved the content of phycobiliprotein, but also the SBE increased superoxide dismutase (SOD) activity. Based on the results of this study, the boiling extraction method appears to be the most suitable method for the extraction of plants stimulants from Sargassum horneri.


Assuntos
Phaeophyceae , Rodófitas , Sargassum , Alga Marinha , China , Sargassum/fisiologia , Alga Marinha/metabolismo
7.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088860

RESUMO

Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.


Assuntos
Kelp , Phaeophyceae , Células Germinativas Vegetais , Humanos , Kelp/genética , Melhoramento Vegetal , Açúcares
8.
Mar Environ Res ; 173: 105544, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34953362

RESUMO

Large-scale Sargassum blooms have been increasingly observed in coastal zones in recent years. Sargassum horneri (Turner) C. Agardh blooms (pelagic) have been observed in Jeju Island (Korea) and the southwest of the Korean Peninsula, causing serious problems for seaweed and abalone farms as well as for fisheries, tourism and recreational industries. The present study explored the physiological responses of attached and pelagic S. horneri populations cultivated under different nutrient concentrations (HN: 50 µM of nitrogen and 5 µM of phosphorus; LN: 5 µM of nitrogen and 0.5 µM of phosphorus) and photosynthetically active radiation (PAR) (H-PAR: 250; M-PAR: 150; L-PAR: 50 µmol photons m-2 s-1) for 25 days. Relative growth rates (RGR) were significantly lower in the pelagic population than that in the attached population. All thalli from the pelagic population died within 20 days. Chlorophyll a and c, and carotenoids were significantly higher at HN than at LN, and decreased as PAR increased for both populations. For the attached population, photosynthetic rate, tissue nitrogen, and carbon and nitrogen removal were also significantly higher at HN than at LN. These results suggest that high nutrient and lower PAR increased the biomass accumulation of attached populations in coastal areas. Nutrient limitation and high PAR may accelerate senescence of the pelagic populations while traveling on the sea surface from their point of origin.


Assuntos
Sargassum , Alga Marinha , Clorofila A , Pesqueiros , Nutrientes
9.
PLoS Biol ; 18(2): e3000641, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32058997

RESUMO

Ex situ seed banking was first conceptualized and implemented in the early 20th century to maintain and protect crop lines. Today, ex situ seed banking is important for the preservation of heirloom strains, biodiversity conservation and ecosystem restoration, and diverse research applications. However, these efforts primarily target microalgae and terrestrial plants. Although some collections include macroalgae (i.e., seaweeds), they are relatively few and have yet to be connected via any international, coordinated initiative. In this piece, we provide a brief introduction to macroalgal germplasm banking and its application to conservation, industry, and mariculture. We argue that concerted effort should be made globally in germline preservation of marine algal species via germplasm banking with an overview of the technical advances for feasibility and ensured success.


Assuntos
Alga Marinha , Banco de Sementes , Aquicultura , Conservação dos Recursos Naturais , Ecossistema , Abastecimento de Alimentos , Variação Genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Cooperação Internacional , Alga Marinha/classificação , Alga Marinha/genética , Alga Marinha/crescimento & desenvolvimento
10.
J Phycol ; 56(2): 380-392, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31804706

RESUMO

This study was designed to understand better if and how juvenile sporophytes of Macrocystis pyrifera can photoacclimate to high-light conditions when transplanted from 10 to 3 meters over 7 d. Acclimation of adult sporophytes to light regimes in the bathymetric gradient has been extensively documented. It primarily depends on photoacclimation and translocation of resources among blades. Among other physiological differences, juvenile sporophytes of M. pyrifera lack the structural complexity shown by adults. As such, juveniles may primarily depend on their photoacclimation capacities to maintain productivity and even avoid mortality under changing light regimes. However, little is known about how these mechanisms operate in young individuals. The capacity of sporophytes to photoacclimate was assessed by examining changes in their photosynthetic performance, pigment content, and bio-optical properties of the blade. Sporophytes nutritional status and oxidative damage were also determined. Results showed that juvenile sporophytes transplanted to shallow water were able to regulate light harvesting by reducing pigment concentration, and thus, absorptance and photosynthetic efficiency. Also, shallow-water sporophytes notably enhanced the dissipation of light energy as heat (NPQ) as a photoprotective mechanism. Generally, these adjustments allowed sporophytes to manage the absorption and utilization of light energy, hence reducing the potential for photo-oxidative damage. Furthermore, no substantial changes were found in the internal reserves (i.e., soluble carbohydrates and nitrogen) of these sporophytes. To our knowledge, these results are the first to provide robust evidence of photoprotective and photoacclimation strategies in juveniles of M. pyrifera, allowing them to restrict or avoid photodamage during shallow-water cultivation.


Assuntos
Macrocystis , Aclimatação , Nitrogênio , Fotossíntese , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA