Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(21): 4237-4245, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747575

RESUMO

Topological defects, which are singular points in a director field, play a major role in shaping active systems. Here, we experimentally study topological defects and the flow patterns around them, that are formed during the highly rapid dynamics of swarming bacteria. The results are compared to the predictions of two-dimensional active nematics. We show that, even though some of the assumptions underlying the theory do not hold, the swarm dynamics is in agreement with two-dimensional nematic theory. In particular, we look into the multi-layered structure of the swarm, which is an important feature of real, natural colonies, and find a strong coupling between layers. Our results suggest that the defect-charge density is hyperuniform, i.e., that long range density-fluctuations are suppressed.

2.
Langmuir ; 40(14): 7395-7404, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527127

RESUMO

Ice-binding proteins (IBPs) are expressed in various organisms for several functions, such as protecting them from freezing and freeze injuries. Via adsorption on ice surfaces, IBPs depress ice growth and recrystallization and affect nucleation and ice shaping. IBPs have shown promise in mitigating ice growth under moderate supercooling conditions, but their functionality under cryogenic conditions has been less explored. In this study, we investigate the impact of two types of antifreeze proteins (AFPs): type III AFP from fish and a hyperactive AFP from an insect, the Tenebrio molitor AFP, in vitrified dimethylsulfoxide (DMSO) solutions. We report that these AFPs depress devitrification at -80 °C. Furthermore, in cases where devitrification does occur, AFPs depress ice recrystallization during the warming stage. The data directly demonstrate that AFPs are active at temperatures below the regime of homogeneous nucleation. This research paves the way for exploring AFPs as potential enhancers of cryopreservation techniques, minimizing ice-growth-related damage, and promoting advancements in this vital field.


Assuntos
Gelo , alfa-Fetoproteínas , Animais , Temperatura , Congelamento , Proteínas Anticongelantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA