Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 86(14): 459-478, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37313572

RESUMO

Herbicides are used in agriculture to control harmful crop weeds, prevent algae proliferation, and enhance macrophyte growth. Herbicide contamination of water bodies might exert toxic effects on fish in different development stages. Sperm, embryos, and adults of Astyanax altiparanae were used as a model to examine the detrimental effects of the following herbicide formulations: Roundup Transorb® (glyphosate), Arsenal® NA (imazapyr), and Reglone® (diquat). The lethal concentration 50 (LC50) values for adults using glyphosate and imazapyr were 3.14 mg/L and 4.59 mg/L, respectively, while the LC50 was higher than 28 mg/L for diquat. For the initial stages of embryo development, LC50 values were 16.52 mg/L glyphosate, 9.33 mg/L imazapyr, and 1084 mg/L diquat. Inhibition of sperm motility was noted at 252 mg/L glyphosate, 137 mg/L imazapyr, and 11,300 mg/L diquat, with an average sperm viability of 12.5%, 73.2%, and 89.3%, respectively, compared to 87.5% detected to control. A. altiparanae exhibited different sensitivities to the herbicide formulations investigated in the developmental stages evaluated. Roundup Transorb® exposure was more toxic for adults, while Arsenal® NA was most harmful for early embryonic development and inhibited sperm motility. Reglone® demonstrated low toxicity for A. altiparanae compared to Roundup Transorb® and Arsenal® NA. A. altiparanae may be considered an emerging fish model for toxicological studies for the neotropical region due to its wide distribution and biological characteristics.


Assuntos
Characidae , Caraciformes , Herbicidas , Poluentes Químicos da Água , Animais , Masculino , Herbicidas/toxicidade , Diquat , Motilidade dos Espermatozoides , Sêmen , Poluentes Químicos da Água/toxicidade
2.
Biol Reprod ; 106(1): 213-226, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34725678

RESUMO

Holding at room temperature is the first step in most boar semen cryopreservation protocols. It is well accepted that a holding time (HT) of 24 h increases sperm cryotolerance. However, the effect of HT on ejaculates with different freezability is not entirely clear. The aim of this study was to understand how HT influences spermatic and seminal plasma metabolite profiles of boar ejaculates and how these possible changes affect freezability. A total of 27 ejaculates were collected and extended to 1:1 (v: v) with BTS and split into two aliquots. The first aliquot was cryopreserved without HT (0 h), and the second was held at 17°C for 24 h before cryopreservation. Spermatozoa and seminal plasma were collected by centrifugation at two times, before HT (0 h) and after HT (24 h), and subsequently frozen until metabolite extraction and UPLC-MS analysis. After thawing, the semen samples were evaluated for kinetics, membrane integrity, mitochondrial potential, membrane lipid peroxidation, and fluidity. The ejaculates were then allocated into two phenotypes (good ejaculate freezers [GEF] and poor ejaculate freezers [PEF]) based on the percent reduction in sperm quality (%RSQ) as determined by the difference in total motility and membrane integrity between raw and post-thaw samples cryopreserved after 24 h of HT. The metabolic profile of the seminal plasma did not seem to influence ejaculate freezability, but that of the spermatozoa were markedly different between GEF and PEF. We identified a number of metabolic markers in the sperm cells (including inosine, hypoxanthine, creatine, ADP, niacinamide, spermine, and 2-methylbutyrylcarnitine) that were directly related to the improvement of ejaculate freezability during HT; these were components of metabolic pathways associated with energy production. Furthermore, PEF showed an upregulation in the arginine and proline as well as the glutathione metabolism pathways. These findings help to better understand the effect of HT on boar sperm freezability and propose prospective metabolic markers that may predict freezability; this has implications in both basic and applied sciences.


Assuntos
Criopreservação/veterinária , Metaboloma/fisiologia , Preservação do Sêmen/veterinária , Espermatozoides/metabolismo , Sus scrofa , Fatores de Tempo , Animais , Criopreservação/métodos , Masculino , Fenótipo , Sêmen/química , Sêmen/metabolismo , Análise do Sêmen/veterinária , Preservação do Sêmen/métodos , Temperatura
3.
Fish Physiol Biochem ; 47(3): 737-746, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32556899

RESUMO

This study interrogated factors which affect the appearance of secondary sexual characteristics, namely, fin spinelets (rigid dimorphic structure empirically associated with male sexual maturity in characids), in Astyanax altiparanae. Many variables such as the season of the year and several biotic components, including organism length, sex, phase of maturation, and the presence of gonads, were investigated. These factors were then associated with the physiological development of fin spinelets. The development of this trait is related to reproductive strategies but demonstrates considerable population variability as it is found throughout the year in some species but only during specific periods in others. Seventy-five specimens obtained from spontaneous spawn of farmed fish were arbitrarily grouped into small-, medium-, and large-sized groups in both summer and winter. Gonadal histology was performed to confirm each animal's sex and phase of maturation. Diaphanization of the fish was performed to visualize, count, and measure the fin spinelets. Finally, gonadectomization of some males was utilized to investigate the gonadal effect on the presence of fin spinelets. The present results show that the presence of fin spinelets is a secondary sexual characteristic of males which occurs independently of the season and is always present in males longer than 48 mm. However, in the summer, male specimens presented more rays with fin spinelets than during the winter. Furthermore, since fin spinelets were observed on immature males as well as spawning capable males, their presence cannot be directly associated with sexual maturity in male A. altiparanae, as previously supposed. Finally, gonadectomization resulted in an initial reduction in the length of fin spinelets. However, this trend was eventually normalized with time.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Characidae/anatomia & histologia , Caracteres Sexuais , Animais , Castração , Feminino , Masculino , Ovário/anatomia & histologia , Ovário/cirurgia , Estações do Ano , Testículo/anatomia & histologia , Testículo/cirurgia
5.
Int J Dev Biol ; 63(1-2): 57-65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919916

RESUMO

The transplantation of primordial germ cells (PGCs) is a valuable tool for gene-banking and reconstitution by means of a germline chimera. For this technology, studies regarding developmental stages and traceability of PGCs are necessary. The objective of this study was to develop a micromanipulation procedure for the future establishment of cryobanks of PGCs in migratory characins. Incubation temperatures were evaluated at 22 ° C, 26 ° C, and 30 ° C in order to synchronize developmental stages. The highest hatching rates and the lowest abnormality rate arose at 26° C, which was considered to be the best incubation temperature. Enzymatic removal of the chorion was determined to be best using 0.05% pronase, in which the embryos presented better survival rates. In order to visualize PGCs in vivo, artificial GFP-nos1 3'UTR mRNA was injected and the migration route was observed in vivo as PGCs were visualized firstly at the segmentation stage (6 to 13 somites). The number of GFP positive cells ranged from 8 to 20 per embryo (mean of 13.8; n = 5). After hatching, GFP-positive cells increased to 14 to 27 embryos (mean of 19.8; n = 5). Visualization of the GFP-positive cells was possible at 10 days post hatching, and at this stage, the cells were positioned in the yolk extension region. This is the first report on PGC visualization in vivo in Neotropical fish; the obtained data provide information on the identification and migration of PGCs. The information presented in this work brings new insights in gene banking in Neotropical species and subsequent reconstitution through a germinal germline chimera.


Assuntos
Movimento Celular , Caraciformes/embriologia , Córion , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Células Germinativas/citologia , Micromanipulação , Animais , Embrião não Mamífero/fisiologia , Células Germinativas/fisiologia
6.
PLoS One ; 13(8): e0201812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089140

RESUMO

Aflatoxins (AF) can be cumulative in fish tissues and can influence weight, length, feed intake and survival depending on the species. The aim of this work is to measure performance and aflatoxin levels in tissues of matrinxã (Brycon cephalus) fish chronically exposed to aflatoxin. Aflatoxin was incorporated into fish diets at the following levels: Control Feed + 0 µg AFB1 kg-1; A. Feed + 10 µg AFB1 kg-1; B. Feed + 20 µg AFB1 kg-1; C. Feed + 50 µg AFB1 kg-1. It was used one tank per treatment, each one with 150 juvenile fish, and three replicates within each tank were used for sampling, that was carried out monthly over a period of six months. Aflatoxin was quantified by HPLC in fish liver and muscle after clean up using immunoaffinity columns. Performance was evaluated by using weight, length, consumption and survival rate. Muscle and liver aflatoxin levels were below the limit of detection in all control samples. Aflatoxins B2, G1 and G2 were not detected in any tissues. Traces (values between limits of detection and quantification) of AFB1 were observed in liver tissue in treatment A from day 30 through 90, reaching 0.32 µg AFB1 kg-1 at 150 days of exposure. Treatment B presented traces up to day 60 and had, with a maximum level of 0.39 µg AFB1 kg-1 at 150 days of exposure. Treatment C had aflatoxin residues after day 30, with values ranging from 0.17 to 0.61 µg AFB1 kg-1 during exposure. Muscle samples only had traces of AFB1 in all treatments. Fish was affected by exposure to AFB1 with higher values (P<0.05) for weight and length in treatments A, B and C relative to controls. Therefore, results indicate that matrinxã do not accumulate AFB1 residues in edible tissues, but chronic exposure affects the species.


Assuntos
Aflatoxina B1/efeitos adversos , Aflatoxina B1/metabolismo , Caraciformes/metabolismo , Dieta , Animais , Tamanho Corporal , Peso Corporal , Caraciformes/anatomia & histologia , Ingestão de Alimentos , Exposição Ambiental , Fígado/metabolismo , Músculos/metabolismo
7.
Front Genet ; 8: 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993791

RESUMO

The production of triploid yellowtail tetra Astyanax altiparanae is a key factor to obtain permanently sterile individuals by chromosome set manipulation. Flow cytometric analysis is the main tool for confirmation of the resultant triploids individuals, but very few protocols are specific for A. altiparanae species. The current study has developed a protocol to estimate DNA content in this species. Furthermore, a protocol for long-term storage of dorsal fins used for flow cytometry analysis was established. The combination of five solutions with three detergents (Nonidet P-40 Substitute, Tween 20, and Triton X-100) at 0.1, 0.2, and 0.4% concentration was evaluated. Using the best solution from this first experiment, the addition of trypsin (0.125, 0.25, and 0.5%) and sucrose (74 mM) and the effects of increased concentrations of the detergents at 0.6 and 1.2% concentration were also evaluated. After adjustment of the protocol for flow cytometry, preservation of somatic tissue or isolated nuclei was also evaluated by freezing (at -20°C) and fixation in saturated NaCl solution, acetic methanol (1:3), ethanol, and formalin at 10% for 30 or 60 days of storage at 25°C. Flow cytometry analysis in yellowtail tetra species was optimized using the following conditions: lysis solution: 9.53 mM MgCl2.7H20; 47.67 mM KCl; 15 mM Tris; 74 mM sucrose, 0.6% Triton X-100, pH 8.0; staining solution: Dulbecco's PBS with DAPI 1 µg mL-1; preservation procedure: somatic cells (dorsal fin samples) frozen at -20°C. Using this protocol, samples may be stored up to 60 days with good accuracy for flow cytometry analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA