Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 14(1): 6039, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758700

RESUMO

Aberrant expansion of KRT5+ basal cells in the distal lung accompanies progressive alveolar epithelial cell loss and tissue remodelling during fibrogenesis in idiopathic pulmonary fibrosis (IPF). The mechanisms determining activity of KRT5+ cells in IPF have not been delineated. Here, we reveal a potential mechanism by which KRT5+ cells migrate within the fibrotic lung, navigating regional differences in collagen topography. In vitro, KRT5+ cell migratory characteristics and expression of remodelling genes are modulated by extracellular matrix (ECM) composition and organisation. Mass spectrometry- based proteomics revealed compositional differences in ECM components secreted by primary human lung fibroblasts (HLF) from IPF patients compared to controls. Over-expression of ECM glycoprotein, Secreted Protein Acidic and Cysteine Rich (SPARC) in the IPF HLF matrix restricts KRT5+ cell migration in vitro. Together, our findings demonstrate how changes to the ECM in IPF directly influence KRT5+ cell behaviour and function contributing to remodelling events in the fibrotic niche.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Matriz Extracelular , Células Epiteliais Alveolares , Transporte Biológico , Movimento Celular , Queratina-5
2.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227431

RESUMO

Background: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.


Three-quarters of children hospitalized for wheezing or asthma symptoms are preschool-aged. Some will continue to experience breathing difficulties through childhood and adulthood. Others will undergo a complete resolution of their symptoms by the time they reach elementary school. The varied trajectories of young children with wheezing suggest that it is not a single disease. There are likely different genetic or environmental causes. Despite these differences, wheezing treatments for young children are 'one size fits all.' Studying the genetic underpinnings of wheezing may lead to more customized treatment options. Granell et al. studied the genetic architecture of different patterns of wheezing from infancy to adolescence. To do so, they used machine learning technology to analyze the genomes of 9,568 individuals, who participated in five studies in the United Kingdom from birth to age 18. The experiments found a new genetic variation in the ANXA1 gene linked with persistent wheezing starting in early childhood. By comparing mice with and without this gene, Granell et al. showed that the protein encoded by ANXA1 controls inflammation in the lungs in response to allergens. Animals lacking the protein develop worse lung inflammation after exposure to dust mite allergens. Identifying a new gene linked to a specific subtype of wheezing might help scientists develop better strategies to diagnose, treat, and prevent asthma. More studies are needed on the role of the protein encoded by ANXA1 in reducing allergen-triggered lung inflammation to determine if this protein or therapies that boost its production may offer relief for chronic lung inflammation.


Assuntos
Asma , Hipersensibilidade , Animais , Camundongos , Asma/genética , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Fenótipo , Sons Respiratórios/genética , Anexinas/genética
3.
Nat Commun ; 10(1): 1178, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862802

RESUMO

Damage to alveoli, the gas-exchanging region of the lungs, is a component of many chronic and acute lung diseases. In addition, insufficient generation of alveoli results in bronchopulmonary dysplasia, a disease of prematurity. Therefore visualising the process of alveolar development (alveologenesis) is critical for our understanding of lung homeostasis and for the development of treatments to repair and regenerate lung tissue. Here we show live alveologenesis, using long-term, time-lapse imaging of precision-cut lung slices. We reveal that during this process, epithelial cells are highly mobile and we identify specific cell behaviours that contribute to alveologenesis: cell clustering, hollowing and cell extension. Using the cytoskeleton inhibitors blebbistatin and cytochalasin D, we show that cell migration is a key driver of alveologenesis. This study reveals important novel information about lung biology and provides a new system in which to manipulate alveologenesis genetically and pharmacologically.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Organogênese/fisiologia , Alvéolos Pulmonares/embriologia , Actomiosina/antagonistas & inibidores , Actomiosina/fisiologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Células Epiteliais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Animais , Organogênese/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Imagem com Lapso de Tempo
4.
Bio Protoc ; 9(20): e3403, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654904

RESUMO

Alveoli are the gas-exchange units of lung. The process of alveolar development, alveologenesis, is regulated by a complex network of signaling pathways that act on various cell types including alveolar type I and II epithelial cells, fibroblasts and the vascular endothelium. Dysregulated alveologenesis results in bronchopulmonary dysplasia in neonates and in adults, disrupted alveolar regeneration is associated with chronic lung diseases including COPD and pulmonary fibrosis. Therefore, visualizing alveologenesis is critical to understand lung homeostasis and for the development of effective therapies for incurable lung diseases. We have developed a technique to visualize alveologenesis in real-time using a combination of widefield microscopy and image deconvolution of precision-cut lung slices. Here, we describe this live imaging technique in step-by-step detail. This time-lapse imaging technique can be used to capture the dynamics of individual cells within tissue slices over a long time period (up to 16 h), with minimal loss of fluorescence or cell toxicity.

5.
Dis Model Mech ; 11(1)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29361513

RESUMO

We previously identified dipeptidylpeptidase 10 (DPP10) on chromosome 2 as a human asthma susceptibility gene, through positional cloning. Initial association results were confirmed in many subsequent association studies but the functional role of DPP10 in asthma remains unclear. Using the MRC Harwell N-ethyl-N-nitrosourea (ENU) DNA archive, we identified a point mutation in Dpp10 that caused an amino acid change from valine to aspartic acid in the ß-propeller region of the protein. Mice carrying this point mutation were recovered and a congenic line was established (Dpp10145D ). Macroscopic examination and lung histology revealed no significant differences between wild-type and Dpp10145D/145D mice. However, after house dust mite (HDM) treatment, Dpp10 mutant mice showed significantly increased airway resistance in response to 100 mg/ml methacholine. Total serum IgE levels and bronchoalveolar lavage (BAL) eosinophil counts were significantly higher in homozygotes than in control mice after HDM treatment. DPP10 protein is present in airway epithelial cells and altered expression is observed in both tissue from asthmatic patients and in mice following HDM challenge. Moreover, knockdown of DPP10 in human airway epithelial cells results in altered cytokine responses. These results show that a Dpp10 point mutation leads to increased airway responsiveness following allergen challenge and provide biological evidence to support previous findings from human genetic studies. This article has an associated First Person interview with the first author of the paper.


Assuntos
Asma/enzimologia , Asma/prevenção & controle , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Sequência de Aminoácidos , Animais , Asma/complicações , Asma/patologia , Sequência de Bases , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Etilnitrosoureia , Genótipo , Homozigoto , Humanos , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Inflamação/complicações , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Camundongos Mutantes , Mutação/genética , Pyroglyphidae , Reprodutibilidade dos Testes
6.
Sci Rep ; 7(1): 1880, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500339

RESUMO

The question of how cell division orientation is determined is fundamentally important for understanding tissue and organ shape in both healthy or disease conditions. Here we provide evidence for cell contact-dependent orientation of planar cell division in the mammalian embryonic skin. We propose a model where the core planar polarity proteins Celsr1 and Frizzled-6 (Fz6) communicate the long axis orientation of interphase basal cells to neighbouring basal mitoses so that they align their horizontal division plane along the same axis. The underlying mechanism requires a direct, cell surface, planar polarised cue, which we posit depends upon variant post-translational forms of Celsr1 protein coupled to Fz6. Our hypothesis has parallels with contact-mediated division orientation in early C. elegans embryos suggesting functional conservation between the adhesion-GPCRs Celsr1 and Latrophilin-1. We propose that linking planar cell division plane with interphase neighbour long axis geometry reinforces axial bias in skin spreading around the mouse embryo body.


Assuntos
Comunicação Celular , Divisão Celular , Polaridade Celular , Embrião de Mamíferos , Pele/citologia , Pele/metabolismo , Animais , Interfase/genética , Camundongos , Camundongos Knockout , Mitose/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
Dis Model Mech ; 10(4): 409-423, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237967

RESUMO

Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema.


Assuntos
Envelhecimento/patologia , Polaridade Celular , Homeostase , Pulmão/patologia , Proteínas do Tecido Nervoso/genética , Cicatrização , Células A549 , Citoesqueleto de Actina/metabolismo , Animais , Movimento Celular , Regulação para Baixo/genética , Elastina/metabolismo , Embrião de Mamíferos/patologia , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Pulmão/embriologia , Pulmão/fisiopatologia , Macrófagos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Fenótipo , Polimorfismo Genético , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
PLoS Genet ; 10(5): e1004323, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24852022

RESUMO

Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Polaridade Celular , Feminino , Homeostase , Hiperplasia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Morfogênese
9.
Dev Biol ; 373(2): 267-80, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23195221

RESUMO

During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell-cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical-basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, 'open' lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in Scrib(Crc/Crc) lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell-cell association, we show that Scrib associates with ß-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell-cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion.


Assuntos
Comunicação Celular , Células Epiteliais/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/citologia , Pulmão/embriologia , Mamíferos/embriologia , Morfogênese , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/embriologia , Epitélio/metabolismo , Técnicas de Silenciamento de Genes , Imageamento Tridimensional , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Morfolinos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-2/metabolismo , beta Catenina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Organogenesis ; 7(3): 209-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22030785

RESUMO

The clinical burden of both adult and neonatal lung disease worldwide is substantial; in the UK alone, respiratory disease kills one in four people. It is increasingly recognized that genes and pathways that regulate lung development, may be aberrantly activated in disease and/or reactivated as part of the lungs' intrinsic repair mechanisms. Investigating the genes and signaling pathways that regulate lung growth has led to significant insights into the pathogenesis of congenital and adult lung disease. Recently, the planar cell polarity (PCP) pathway has been shown to be required for normal lung development, and data suggests that this signaling pathway is also involved in the pathogenesis of some lung diseases. In this review, we summarize current evidence indicating that the PCP pathway is required for both lung development and disease.


Assuntos
Polaridade Celular , Pneumopatias/patologia , Pulmão/citologia , Animais , Caderinas/metabolismo , Humanos , Pulmão/embriologia , Pneumopatias/metabolismo , Proteínas de Membrana/metabolismo , Organogênese , Transdução de Sinais , Proteínas Wnt/metabolismo
11.
Hum Mol Genet ; 19(23): 4663-76, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20843830

RESUMO

The planar cell polarity (PCP) pathway, incorporating non-canonical Wnt signalling, controls embryonic convergent (CE) extension, polarized cell division and ciliary orientation. It also limits diameters of differentiating renal tubules, with mutation of certain components of the pathway causing cystic kidneys. Mutations in mouse Vangl genes encoding core PCP proteins cause neural tube defects (NTDs) and Vangl2 mutations also impair branching of embryonic mouse lung airways. Embryonic metanephric kidneys also undergo branching morphogenesis and Vangl2 is known to be expressed in ureteric bud/collecting duct and metanephric mesenchymal/nephron lineages. These observations led us to investigate metanephroi in Vangl2 mutant mice, Loop-tail (Lp). Although ureteric bud formation is normal in Vangl2(Lp/Lp) embryos, subsequent in vivo and in vitro branching morphogenesis is impaired. Null mutant kidneys are short, consistent with a CE defect. Differentiating glomerular epithelia express several PCP genes (Vangl1/2, Celsr1, Scrib, Mpk1/2 and Fat4) and glomeruli in Vangl2(Lp/Lp) fetuses are smaller and contain less prominent capillary loops than wild-type littermates. Furthermore, Vangl2(Lp/+) kidneys had modest reduction in glomerular numbers postnatally. Vangl2(Lp/Lp) metanephroi contained occasional dilated tubules but no overt cystic phenotype. These data show for the first time that a PCP gene is required for normal morphogenesis of both the ureteric bud and metanephric mesenchyme-derived structures. It has long been recognized that certain individuals with NTDs are born with malformed kidneys, and recent studies have discovered VANGL mutations in some NTD patients. On the basis of our mutant mouse study, we suggest that PCP pathway mutations should be sought when NTD and renal malformation co-exist.


Assuntos
Glomérulos Renais/embriologia , Rim/embriologia , Proteínas do Tecido Nervoso/genética , Organogênese/genética , Animais , Polaridade Celular/genética , Imunofluorescência , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/metabolismo , Rim/patologia , Glomérulos Renais/patologia , Camundongos , Camundongos Mutantes , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
12.
Hum Mol Genet ; 19(11): 2251-67, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20223754

RESUMO

The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1(Crsh) and Vangl2(Lp) mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies.


Assuntos
Pulmão/embriologia , Morfogênese/genética , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Mucosa Respiratória/metabolismo , Transdução de Sinais/genética , Animais , Polaridade Celular/genética , Polaridade Celular/fisiologia , Immunoblotting , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Oligonucleotídeos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Mucosa Respiratória/embriologia
13.
J Gene Med ; 9(1): 44-54, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17167816

RESUMO

BACKGROUND: Successful non-viral gene targeting requires vectors to meet two conflicting needs-strong binding to protect the genetic material during transit and weak binding at the target site to enable release. Responsive polymers could fulfil such requirements through the switching of states, e.g. the chain-extended coil to chain-collapsed globule phase transition that occurs at a lower critical solution temperature (LCST), in order to transport nucleic acid in one polymer state and release it in another. METHODS: The ability of new synthetic polycations based on poly(ethyleneimine) (PEI) with grafted neutral responsive poly(N-isopropylacrylamide) (PNIPAm) chains to condense DNA into particles with architectures varying according to graft polymer LCST was assessed using a combination of fluorescence spectroscopy, dynamic light scattering (DLS), zeta sizing, gel retardation and atomic force microscopy studies. Transfection assays were conducted under experimental conditions wherein the polymer components were able to cycle across their LCST. RESULTS: Two PEI-PNIPAm conjugate polymers with different LCSTs displayed coil-globule transitions when complexed to plasmid DNA, leading to variations in molecular architecture as shown by changes in emission maxima of an environment-sensitive fluorophore attached to the PNIPAm chains. Gel retardation assays demonstrated differences in electrophoretic mobilities of polymer-DNA complexes with temperatures below and above polymer LCSTs. Atomic force micrographs showed changes in the structures of polymer-DNA complexes for a polymer undergoing a phase transition around body temperature but not for the polymer with LCST outside this range. Transfection experiments in C2C12 and COS-7 cells demonstrated that the highest expression of transgene occurred in an assay that involved a 'cold-shock' below polymer LCST during transfection. CONCLUSIONS: Designed changes in thermoresponsive polycation vector configuration via temperature-induced phase transitions enhanced transgene expression. The results indicate that changes in molecular architecture induced by a carefully chosen stimulus during intracellular trafficking can be used to enhance gene delivery.


Assuntos
Regulação da Expressão Gênica , Vetores Genéticos/química , Polímeros/química , Resinas Acrílicas/química , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Camundongos , Polietilenoimina/química , Temperatura , Transfecção
14.
Acta Biochim Pol ; 53(4): 651-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17068636

RESUMO

The nuclear factor-kappaB (NF-kappaB) transcription factors regulate a plethora of cellular pathways and processes including the immune response, inflammation, proliferation, apoptosis and calcium homeostasis. In addition to the complexity of its physiological roles, the composition and function of this family of proteins is very complicated. While the basic understanding of NF-kappaB signalling is extensive, relatively little is know of the in vivo dynamics of this pathway or what controls the balance between various outcomes. Although we know a large number of NF-kappaB-responsive genes, the contribution of these genes to a specific response is not always clear. Finally, the involvement of NF-kappaB in pathological processes is only now beginning to be unravelled. In addition to cancer and immunodeficiency disorders, altered regulation of NF-kappaB has been associated with several inherited diseases. These findings indicate that modulation of the NF-kappaB pathways may be beneficial. However, our limited knowledge of NF-kappaB signalling hinders therapeutic approaches: in many situations it is not clear whether the enhancement or inhibition of NF-kappaB activity would be beneficial or which pathways to interfere with and what the required level of activation is. Further studies of the role of NF-kappaB are needed as these may result in novel therapeutic strategies for a wide variety of diseases.


Assuntos
Sistemas de Liberação de Medicamentos , NF-kappa B/metabolismo , Animais , Suscetibilidade a Doenças/etiologia , Suscetibilidade a Doenças/terapia , Humanos , NF-kappa B/efeitos dos fármacos , NF-kappa B/fisiologia , Transdução de Sinais , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA