Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Hum Biol ; 34(4): e23667, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34418235

RESUMO

OBJECTIVE: To test the "vitamin D-folate hypothesis for the evolution of human skin pigmentation." METHODS: Total ozone mapping spectrometer (TOMS) satellite data were used to examine surface UV-irradiance in a large (n = 649) Australian cross-sectional study population. Genetic analysis was used to score vitamin D- and folate-related gene polymorphisms (n = 22), along with two pigmentation gene variants (IRF4-rs12203592/HERC2-rs12913832). Red cell folate and vitamin D3 were measured by immunoassay and HPLC, respectively. RESULTS: Ultraviolet radiation (UVR) and pigmentation genes interact to modify blood vitamin levels; Light skin IRF4-TT genotype has greatest folate loss while light skin HERC2-GG genotype has greatest vitamin D3 synthesis (reflected in both TOMS and seasonal data). UV-wavelength exhibits a dose-response relationship in folate loss within light skin IRF4-TT genotype (305 > 310 > 324 > 380 nm). Significant vitamin D3 photosynthesis only occurs within light skin HERC2-GG genotype, and is maximal at 305 nm. Three dietary antioxidants (vitamins C, E, and ß-carotene) interact with UVR and pigmentation genes preventing oxidative loss of labile reduced folate vitamers, with greatest benefit in light skin IRF4-TT subjects. The putative photosensitiser, riboflavin, did not sensitize red cell folate to UVR and actually afforded protection. Four genes (5xSNPs) influenced blood vitamin levels when stratified by pigmentation genotype; MTHFR-rs1801133/rs1801131, TS-rs34489327, CYP24A-rs17216707, and VDR-ApaI-rs7975232. Lightest IRF4-TT/darkest HERC2-AA genotype combination (greatest folate loss/lowest vitamin D3 synthesis) has 0% occurrence. The opposing, commonest (39%) compound genotype (darkest IRF4-CC/lightest HERC2-GG) permits least folate loss and greatest synthesis of vitamin D3 . CONCLUSION: New biophysical evidence supports the vitamin D-folate hypothesis for evolution of skin pigmentation.


Assuntos
Pigmentação da Pele , Vitamina D , Austrália , Estudos Transversais , Ácido Fólico , Genótipo , Humanos , Pigmentação da Pele/genética , Raios Ultravioleta/efeitos adversos , Vitaminas
2.
Nutrients ; 12(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443475

RESUMO

Elevated homocysteine (Hcy) levels are a risk factor for vascular diseases. Recently, increases in ultraviolet radiation (UVR) have been linked to decreased Hcy levels. This relationship may be mediated by the status of UVR-responsive vitamins, vitamin D and folate, and/or genetic variants influencing their levels; however, this has yet to be examined. Therefore, the independent and interactive influences of environmental UVR, vitamin D and folate levels and related genetic variants on Hcy levels were examined in an elderly Australian cohort (n = 619). Red blood cell folate, 25-hydroxyvitamin D (25(OH)D), and plasma Hcy levels were determined, and genotyping for 21 folate and vitamin D-related variants was performed. Erythemal dose rate accumulated over six-weeks (6W-EDR) and four-months (4M-EDR) prior to clinics were calculated as a measure of environmental UVR. Multivariate analyses found interactions between 6W-EDR and 25(OH)D levels (pinteraction = 0.002), and 4M-EDR and MTHFD1-rs2236225 (pinteraction = 0.006) in predicting Hcy levels. The association between 6W-EDR and Hcy levels was found only in subjects within lower 25(OH)D quartiles (<33.26 ng/mL), with the association between 4M-EDR and Hcy occurring only in subjects carrying the MTHFD1-rs2236225 variant. 4M-EDR, 6W-EDR, and MTHFD1-rs2236225 were also independent predictors of Hcy. Findings highlight nutrient-environment and gene-environment interactions that could influence the risk of Hcy-related outcomes.


Assuntos
Homocisteína/sangue , Metilenotetra-Hidrofolato Desidrogenase (NADP)/sangue , Antígenos de Histocompatibilidade Menor/sangue , Exposição à Radiação/análise , Raios Ultravioleta , Vitamina D/sangue , Idoso , Idoso de 80 Anos ou mais , Austrália , Estudos Transversais , Feminino , Ácido Fólico/sangue , Ácido Fólico/genética , Interação Gene-Ambiente , Variação Genética , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Antígenos de Histocompatibilidade Menor/genética , Análise Multivariada , Nutrigenômica , Fatores de Tempo , Vitamina D/análogos & derivados , Vitamina D/genética
3.
Am J Hum Biol ; 31(4): e23272, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31184412

RESUMO

OBJECTIVES: Within the Developmental Origins of Adult Disease (DOHaD) model, early life environmental exposures can confer a long-term legacy on human health. This mechanism may be adaptive or maladaptive depending on lifestyle circumstances. This article examines the role of first trimester UV-exposure on late-life vitamin D levels, and potentially related adaptive and maladaptive phenotypes (height and osteoporosis respectively). METHODS: Six hundred and forty nine subjects were examined for vitamin D2 and D3 (HPLC) and height (stadiometer). Osteoporosis was assessed with an extensive medical history questionnaire. RESULTS: Solar irradiance over the first 90 days postconception correlated positively with late-life vitamin D3 (R2 = .0140; P = .0082; ß = .1075), but not vitamin D2 levels. It also correlated positively with female adult height (R2 = .170; P = .0103; ß = .1291) and negatively with the occurrence of female osteoporosis (P = .0495). All data were adjusted for age and gender as appropriate (unadjusted data also provided). From a contemporary perspective, vitamin D levels varied significantly according to season of blood sampling as might be predicted (P = .0009). CONCLUSIONS: Increased solar irradiance/UV exposure during the first trimester of pregnancy calibrates adult vitamin D metabolism, which is an important hormone in maintaining calcium balance. This may explain how very early lifecycle UV exposure can influence skeletal development (adult height) and modify risk for the skeletal degenerative disorder osteoporosis. The data demonstrate humans are tuned to the world (exposome) in ways we have not yet fully considered, and which are entrained at the earliest phase of the lifecycle.


Assuntos
Estatura , Homeostase , Osteoporose/epidemiologia , Fenótipo , Primeiro Trimestre da Gravidez/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Vitamina D/sangue , 25-Hidroxivitamina D 2/sangue , Idoso , Calcifediol/sangue , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New South Wales/epidemiologia , Osteoporose/etiologia , Gravidez
4.
Am J Hum Biol ; 30(5): e23166, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198140

RESUMO

OBJECTIVES: The purpose of this study was (1) to elucidate any reciprocal seasonal relationship that might exist between red cell folate (RCF) and serum vitamin D3 Levels; (2) to explore whether folate-related gene variants that influence/alter DNA-thymidylate and methyl group biosynthesis modify any associations detected in objective 1; and (3) to consider whether these processes might influence reproductive success consistent with the "folate-vitamin D-UV hypothesis of skin pigmentation" evolutionary model. METHODS: A large (n = 649) Australian cross-sectional study population was examined. Polymerase chain reaction (PCR)/Restriction fragment length polymorphism (RFLP) analysis was used to genotype C677T-MTHFR, C1420T-SHMT, T401C-MTHFD and 2R > 3R-TS. RCF was measured by chemiluminescent immunoassay and vitamin D2 and D3 by HPLC. RESULTS: RCF and photosynthesized vitamin D3 , but not RCF and dietary vitamin D2 , exhibit a significant reciprocal association in spring and summer. Three folate genes (C677T-MTHFR, C1420T-SHMT, and 2R > 3R-TS) strengthen this effect in spring, and another (T401C-MTHFD) in summer. Effects are seasonal, and do not occur over the whole year. CONCLUSIONS: Findings are consistent with what might be required for the "folate-vitamin D-UV hypothesis of skin pigmentation" model. It suggests genetic influence in provision of one-carbon units by 5,10-methylene-H4 folate, may be an important factor in what appears to be a clear seasonal relationship between vitamin D3 and folate status.


Assuntos
Ácido Fólico/sangue , Vitamina D/sangue , Vitaminas/sangue , Austrália , Colecalciferol/sangue , Colecalciferol/química , Estudos Transversais , Ergocalciferóis/sangue , Ergocalciferóis/química , Eritrócitos/química , Feminino , Ácido Fólico/genética , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Estações do Ano , Soro/química , Vitamina D/genética , Vitaminas/genética
5.
Nutr Rev ; 76(7): 512-525, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718444

RESUMO

This review explores contemporary ideas about the relationship between light exposure and vitamin biology. Nutritional biochemistry has long recognized the relationship between vitamins A and D and light exposure, but in recent years other vitamins have also been implicated in photoresponsive biological mechanisms that influence health, well-being, and even evolutionary processes. Interactions between light and vitamins can modify genotype-phenotype relationships across the life cycle, providing a basis for interesting new explanations relevant to wide aspects of human biology. This review examines both well-established and emerging ideas about vitamin photobiology in the context of the following: (1) light responsiveness of vitamin D (photosynthesized in skin), vitamin A (linked to vision), and vitamin B3 (needed to repair genomic damage); (2) vulnerability of folate and vitamins B1, B2, B12, and D to ultraviolet (UV) light (all potentially degraded); (3) protective/filtering actions of carotenoids and vitamins C and E, which act as antioxidants and/or natural sunscreens, against UV light; (4) role of folate, carotenoids, and vitamins A, B3, C, D, and E in UV-related genomic regulation, maintenance, and repair; (5) role of folate and vitamins A, B2, B12, and D in a range of light-signaling and light-transduction pathways; and (6) links between folate and vitamin D and the evolution of UV light-adaptive phenotypes.


Assuntos
Processos Fototróficos , Raios Ultravioleta , Vitaminas/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo , Ácido Fólico/metabolismo , Humanos , Niacinamida/metabolismo , Fotobiologia , Vitamina A/metabolismo , Vitamina D/metabolismo , Vitamina E/metabolismo
6.
Am J Hum Biol ; 29(5)2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28432711

RESUMO

OBJECTIVES: The vitamin D receptor (VDR) is a member of the nuclear receptor family of transcription factors. We examined whether degree of VDR gene methylation acts as a molecular adaptation to light exposure. We explored this in the context of photoperiod at conception, recent UV irradiance at 305 nm, and gene-latitude effects. METHODS: Eighty subjects were examined for VDR gene-CpG island methylation density. VDR gene variants were also examined by PCR-RFLP. RESULTS: Photoperiod at conception was significantly positively related to VDR methylation density, explaining 17% of the variance in methylation (r2 = 0.17; P = .001). Within this model, photoperiod at conception and plasma 25(OH)D independently predicted methylation density at the VDR-CpG island. Recent UV exposure at 305 nm led to a fivefold increase in mean methylation density (P = .02). Again, UV exposure and plasma 25(OH)D independently predicted methylation density at the VDR-CpG island. In the presence of the BsmI mutant allele, methylation density was increased (P = .01), and in the presence of the TaqI or FokI mutant allele, methylation density was decreased (P = .007 and .04 respectively). Multivariate modelling suggests plasma 25(OH)D, photoperiod at conception, recent solar irradiance, and VDR genotype combine as independent predictors of methylation at the VDR-CpG island, explaining 34% of the variance in methylation (R2 = 0.34, P < .0001). CONCLUSIONS: Duration of early-life light exposure and strength of recent irradiance, along with latitudinal genetic factors, influence degree of VDR gene methylation consistent with this epigenetic phenomenon being a molecular adaptation to variation in ambient light exposure. Findings contribute to our understanding of human biology.


Assuntos
Metilação de DNA/efeitos da radiação , Polimorfismo Genético , Receptores de Calcitriol/genética , Raios Ultravioleta/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Masculino , New South Wales
7.
Food Funct ; 8(3): 1116-1123, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28164195

RESUMO

BACKGROUND: Bitterness is an innate aversive taste important in detecting potentially toxic substances, including alcohol. However, bitter compounds exist in many foods and beverages, and can be desirable, such as in beer. TAS2R38 is a well-studied bitter taste receptor with common polymorphisms. Some have reported relationships between TAS2R38 genotypes, bitter taste phenotype and alcohol intake, however results have been mixed. These mixed results may be explained by the varying taste properties of different alcoholic beverages or a sex dimorphism in responses. METHODS: Bitter taste phenotype was assessed using PROP taste test and TAS2R38-P49A genotype was assessed by RFLP-PCR. Alcohol intake was assessed by food frequency questionnaire and classified by beverage type (beer, wine, spirits or mixed drinks). The relationships between bitter taste phenotype and carriage of the P allele of the TAS2R38-A49P gene and alcohol intake were assessed adjusted for and stratified by sex, and the interaction between taste and sex was evaluated. RESULTS: The relationship between alcohol intake and bitter taste phenotype varied by beverage type, with significant results for beer, spirits and mixed drinks, but not wine. When stratified, results varied by sex, and were only significant in males. Significant interactions were found for taster phenotype and sex (total alcohol intake and intake of beer and spirits). Results were similar for carriage of the TAS2R38-P49A P allele. CONCLUSIONS: Sex-specific interactions between bitter taste phenotype, TAS2R38 genotype and alcohol intake may explain variance in previous studies and may have implications for sex-specific disease risk and public health interventions.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Paladar , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/metabolismo , Bebidas Alcoólicas/análise , Álcoois/metabolismo , Alelos , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais , Adulto Jovem
8.
Am J Hum Biol ; 29(2)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27771938

RESUMO

OBJECTIVES: The purpose of this study was to examine whether UV exposure alters folate status according to C677T-MTHFR genotype, and to consider the relevance of this to human health and the evolutionary model of skin pigmentation. METHODS: Total Ozone Mapping Spectrometer (TOMS) satellite data were used to examine surface UV-irradiance, as a marker of UV exposure, in a large (n = 649) Australian cross-sectional study population. PCR/RFLP analysis was used to genotype C677T-MTHFR. RESULTS: Overall, cumulative UV-irradiance (42 and 120 days pre-clinic) was significantly negatively related to red cell folate (RCF) levels. When the cohort was stratified by MTHFR-C677T genotype, the relationship between UV-irradiance (42 days pre-clinic) and RCF remained significant only in the cohorts containing carriers of the T allele. Statistically significant z-score statistics and interaction terms from genotype and UV-irradiance (p-interaction) demonstrated that genotype did modify the effect of UV-irradiance on RCF, with the largest effect of UV being demonstrated in the 677TT-MTHFR subjects. CONCLUSIONS: Data provide strong evidence that surface UV-irradiance reduces long-term systemic folate levels, and that this is influenced by the C677T-MTHFR gene variant. We speculate this effect may be due to 677TT-MTHFR individuals containing more 5,10CH2 -H4 PteGlu, and that this folate form may be particularly UV labile. Since UV-irradiance lowers RCF in an MTHFR genotype-specific way, there are likely implications for human health and the evolution of skin pigmentation.


Assuntos
Ácido Fólico/metabolismo , Raios Ultravioleta/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Ácido Fólico/efeitos da radiação , Genótipo , Humanos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , New South Wales , Nutrigenômica
9.
Nutr Cancer ; 68(2): 193-200, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904920

RESUMO

Vitamin D receptor (VDR) gene polymorphisms may influence risk for adenomatous polyps (AP), a benign precursor to colon cancer, via modulation of vitamin D sensitive pathways, including cell proliferation and differentiation. However, results have been mixed and any association remains contentious. Failure to clinically exclude the presence of (AP in control cohorts may contribute to the lack of consensus. Therefore, we assessed the role of the FokI, BsmI, ApaI, and TaqI VDR polymorphisms in modifying risk for AP, adjusting for a range of dietary and lifestyle variables. Blood was collected from colonoscopy patients (n = 258) and VDR polymorphisms assessed by restriction fragment length polymorphism. Dietary habits were estimated from food frequency questionnaires. Odds ratios for AP were calculated by genotype, stratified by sex, and adjusted for age, lifestyle, and dietary factors. FokI was associated with modified risk for AP in males, whereas the BsmI/ApaI/TaqI haplotype was associated with modified risk in females. No interaction was found between VDR variants and vitamin D intake. This study offers novel insight into the potential for VDR genetics to contribute to risk for AP and is the first to demonstrate a sex-specific relationship between these polymorphisms and risk for AP.


Assuntos
Pólipos Adenomatosos/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Comportamento Alimentar , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
BBA Clin ; 3: 107-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26673393

RESUMO

PURPOSE: The aim of this study is to explore whether a methylation diet influences risk for adenomatous polyps (AP) either independently, or interactively with one-carbon metabolism-dependent gene variants, and whether such a diet modifies blood homocysteine, a biochemical phenotype closely related to the phenomenon of methylation. METHODS: 249 subjects were examined using selective fluorescence, PCR and food frequency questionnaire to determine homocysteine, nine methylation-related gene polymorphisms, dietary methionine, 5-methyltetrahydrofolate, vitamins B6 and B12. RESULTS: 1). Both dietary methionine and 5-methyltetrahydrofolate intake are significantly associated with plasma homocysteine. 2). Dietary methionine is related to AP risk in 2R3R-TS wildtype subjects, while dietary B12 is similarly related to this phenotype in individuals heterozygous for C1420T-SHMT, A2756G-MS and 844ins68-CBS, and in those recessive for 2R3R-TS. 3). Dietary methionine has a marginal influence on plasma homocysteine level in C1420T-SHMT heterozygotes, while B6 exhibits the same effect on homocysteine in C776G-TCN2 homozygote recessive subjects. Natural 5-methyltetrahydrofolate intake is interesting: Wildtype A1298C-MTHFR, heterozygote C677T-MTHFR, wildtype A2756G-MS and recessive A66G-MSR individuals all show a significant reciprocal association with homocysteine. 4). Stepwise regression of all genotypes to predict risk for AP indicated A2756G-MS and A66G-MSR to be most relevant (p = 0.0176 and 0.0408 respectively). Results were corrected for age and gender. CONCLUSION: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR) were directly associated with AP occurrence.

11.
BBA Clin ; 4: 45-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26674922

RESUMO

BACKGROUND: Free circulating microRNA (miRNA) in serum may be valuable biomarkers for disease diagnosis and prognosis. miR-21, the archetypal oncogenic miRNA, has been proposed as a biomarker for colorectal cancer and its benign precursor, adenomatous polyps. However, it is now becoming clear that circulating miRNA profiles may be sensitive to lifestyle and environmental influences. Dietary components involved in one-carbon metabolism are particularly well placed to modulate miRNA expression through an influence on DNA methylation pathways. METHODS: We investigated the role of methyl group donors (folate, B12, cysteine, homocysteine), polymorphisms of the enzymes of one-carbon metabolism, and serum miR-21 expression in a primary case-control cohort (colonoscopy confirmed adenomatous colon polyps vs controls; n = 253) and a secondary cross-sectional cohort (over 65s; n = 649). The relationships between these parameters and serum miR-21 levels were assessed, stratified by gender. CONCLUSIONS: Serum miR-21 expression was related to occurrence of adenomatous polyps in females, but not males. Folate levels and MTHFR-C677T genotype was associated with miR-21 expression in both genders. Additionally, DHFR-19 del and MSR-A66G were associated with miR-21 expression in females and males, respectively. Stimulation with excess folate increased expression of miR-21 in colon cancer cell lines. GENERAL SIGNIFICANCE: This study demonstrates that serum miR-21 expression correlates with folate status and related genetic status. This may have consequences for the proposed use of miR-21 as a colorectal cancer biomarker.

12.
Asian Pac J Cancer Prev ; 16(10): 4383-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028103

RESUMO

BACKGROUND: The C1561T variant of the glutamate carboxypeptidase II (GCPII) gene is critical for natural methylfolylpolyglutamte (methylfolate) absorption, and has been associated with perturbations in folate metabolism and disease susceptibility. However, little is known on C1561T-GCPII as a risk factor for colorectal cancer. Therefore, this study examined whether C1561T-GCPII influences folate metabolism and adenomatous polyp occurrence. MATERIALS AND METHODS: 164 controls and 38 adenomatous polyp cases were analysed to determine blood folate and plasma homocysteine (Hcy) level, dietary intake of natural methylfolate, synthetic pteroylglutamic acid (PteGlu), vitamin C and C1561T-GCPII genotype. RESULTS: In controls and cases, 7.3 and 18.4 percent of subjects respectively, were found to have the CT genotype, increasing the risk for adenomatous polyp occurrence 2.86 times (95% CI:1.37-8.0, p=0.035). Total dietary folate, methylfolate and PteGlu intake and the level of erythrocyte folate and plasma Hcy did not predict the occurrence of an adenomatous polyp. However, dietary natural vitamin C intake was associated with adenomatous polyp risk within C1561T-GCPII CT genotype subjects (p=0.037). CONCLUSIONS: The findings suggest that C1561T-GCPII variation may be associated with risk for adenomatous polyp, and vitamin C may modify risk by interacting with the variant gene, its expression product and/or folate substrates.


Assuntos
Pólipos Adenomatosos/genética , Ácido Ascórbico/administração & dosagem , Neoplasias Colorretais/genética , Ácido Fólico/sangue , Glutamato Carboxipeptidase II/genética , Vitaminas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Ascórbico/metabolismo , Estudos de Casos e Controles , Dieta , Genótipo , Glutamato Carboxipeptidase II/metabolismo , Homocisteína/sangue , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Ácidos Pteroilpoliglutâmicos/administração & dosagem , Fatores de Risco , Tetra-Hidrofolatos/administração & dosagem , Vitaminas/metabolismo
13.
J Evid Based Complementary Altern Med ; 20(4): 310-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25878189

RESUMO

Interest in vitamin D and the VDR gene is increasing as putative roles in human health and evolutionary processes are explored. This review looks beyond the classic biochemistry that links vitamin D to calcium homeostasis; it explores how vitamin D interacts with light in a broader perspective than simple skin photosynthesis. It examines how the vitamin influences circadian rhythm, and how it may have helped drive the evolution of skin pigmentation. To this end, the nutrient-nutrient relationship with folate is also explored. The VDR gene is additionally examined as a factor in the evolutionary selection of skin depigmentation at higher latitudes to allow vitamin D synthesis. Evidence is given to show that VDR polymorphisms exhibit a latitudinal gradient in allele prevalence consistent with such a paradigm. Overall, the review examines new evo-devo ideas that link light-sensitive vitamins to human health/phenotype, both within and across the lifecycle.


Assuntos
Vitamina D/metabolismo , Animais , Cálcio/metabolismo , Humanos , Polimorfismo Genético , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Pigmentação da Pele/efeitos da radiação
14.
J Nutr Sci Vitaminol (Tokyo) ; 61(6): 455-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26875486

RESUMO

Folate and related gene variants are significant risk factors in the aetiology of colorectal cancer. Dihydrofolate reductase (DHFR) is critical in the metabolism of synthetic folic acid (pteroylmonoglutamatamic, PteGlu) to tetrahydrofolate following absorption. Therefore, the 19bp deletion variant of DHFR may lead to the alteration of folate-related colorectal disease susceptibility. This study examined the association between PteGlu and 19bp del-DHFR, and adenomatous polyp (AP) occurrence, an antecedent of colorectal cancer. A total of 199 subjects (162 controls and 37 AP cases) were analysed to determine dietary intake of total folate, natural methylfolate and synthetic PteGlu, level of erythrocyte folate and plasma homocysteine (tHcy), and genotype of 19bp del-DHFR. Dietary folate intake, erythrocyte folate, tHcy and 19bp del-DHFR variants did not independently predict the occurrence of AP. However, a gene-nutrient interaction was observed when subjects were stratified according to dietary folate intake. In subjects with a folate intake above the median value due to significant dietary PteGlu content, the presence of the 19bp-deletion allele decreased the risk for AP (OR=0.35, 95% CI: 0.13-0.97). However, such association was not evident in individuals with a folate intake below the median value. In conclusion, the finding suggests that folate nutrition and 19bp del-DHFR variation may interact to modify AP risk.


Assuntos
Pólipos Adenomatosos/etiologia , Neoplasias Colorretais/etiologia , Dieta , Ácido Fólico/farmacologia , Genótipo , Estado Nutricional , Tetra-Hidrofolato Desidrogenase/genética , Pólipos Adenomatosos/genética , Pólipos Adenomatosos/metabolismo , Idoso , Alelos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Epigênese Genética , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Fatores de Risco , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolatos/metabolismo
15.
Food Funct ; 5(12): 3040-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25286017

RESUMO

Bitter is the most complex of human tastes, and is arguably the most important. Aversion to bitter taste is important for detecting toxic compounds in food; however, many beneficial nutrients also taste bitter and these may therefore also be avoided as a consequence of bitter taste. While many polymorphisms in TAS2R genes may result in phenotypic differences that influence the range and sensitivity of bitter compounds detected, the full extent to which individuals differ in their abilities to detect bitter compounds remains unknown. Simple logic suggests that taste phenotypes influence food preferences, intake and consequently health status. However, it is becoming clear that genetics only plays a partial role in predicting preference, intake and health outcomes, and the complex, pleiotropic relationships involved are yet to be fully elucidated.


Assuntos
Preferências Alimentares , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Paladar , Saúde , Humanos
16.
Nutr Res Rev ; 27(1): 94-106, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24814762

RESUMO

A growing number of studies in recent years have highlighted the importance of molecular nutrition as a potential determinant of health and disease. In particular, the ability of micronutrients to regulate the final expression of gene products via modulation of transcription and translation is now being recognised. Modulation of microRNA (miRNA) by nutrients is one pathway by which nutrition may mediate gene expression. miRNA, a class of non-coding RNA, can directly regulate gene expression post-transcriptionally. In addition, miRNA are able to indirectly influence gene expression potential at the transcriptional level via modulation of the function of components of the epigenetic machinery (DNA methylation and histone modifications). These mechanisms interact to form a complex, bi-directional regulatory circuit modulating gene expression. Disease-specific miRNA profiles have been identified in multiple disease states, including those with known dietary risk factors. Therefore, the role that nutritional components, in particular, vitamins and minerals, play in the modulation of miRNA profiles, and consequently health and disease, is increasingly being investigated, and as such is a timely subject for review. The recently posited potential for viable exogenous miRNA to enter human blood circulation from food sources adds another interesting dimension to the potential for dietary miRNA to contribute to gene modulation.


Assuntos
Dieta , Epigênese Genética , Expressão Gênica , MicroRNAs/metabolismo , Minerais/metabolismo , Oligoelementos/metabolismo , Vitaminas/metabolismo , Regulação da Expressão Gênica , Humanos
17.
Evol Med Public Health ; 2014(1): 69-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24699387

RESUMO

BACKGROUND AND OBJECTIVES: Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. METHODOLOGY: 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction (PCR)), dietary intake (food frequency questionnaire (FFQ)) and important adult biochemical/clinical phenotypes. RESULTS: Periconceptional solar irradiance was associated with VDR-BsmI (P = 0.0008(wk7)), TaqI (P = 0.0014(wk7)) and EcoRV (P = 0.0030(wk6)) variant occurrence between post-conceptional weeks 6-8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19 bp del-DHFR (P = 0.0025(wk6)), and to a lesser extent C1420T-SHMT (P = 0.0249(wk6)), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (P < 0.0001/BB, 0.0007/tt and 0.0173/AA, respectively) and systolic blood pressure (P = 0.0290/Bb, 0.0299/Tt and 0.0412/AA, respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (P = 0.0037 and 0.0297 for fasting blood glucose and HbA1c levels, respectively). We additionally report nutrient-gene relationships with body mass index, thiol/folate metabolome, cognition, depression and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (P = 0.0120 and 0.0360, respectively). CONCLUSIONS AND IMPLICATIONS: Findings identify environmental and nutritional agents that may interact to modify gene-phenotype relationships across the lifecycle, offering new insight into human ecology. This includes factors related to both disease aetiology and the evolution of skin pigmentation.

18.
J Evid Based Complementary Altern Med ; 19(1): 68-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24647381

RESUMO

Nutrient-gene research tends to focus on human disease, although such interactions are often a by-product of our evolutionary heritage. This review explores health in this context, reframing genetic variation/epigenetic phenomena linked to diet in the framework of our recent evolutionary past. This "Darwinian/evolutionary medicine" approach examines how diet helped us evolve among primates and to adapt (or fail to adapt) our metabolome to specific environmental conditions leading to major diseases of civilization. This review presents updated evidence from a diet-gene perspective, portraying discord that exists with respect to health and our overall nutritional, cultural, and activity patterns. While Darwinian theory goes beyond nutritional considerations, a significant component within this concept does relate to nutrition and the mismatch between genes, modern diet, obesogenic lifestyle, and health outcomes. The review argues that nutritional sciences should expand knowledge on the evolutionary connection between food and disease, assimilating it into clinical training with greater prominence.


Assuntos
Antropologia Médica , Evolução Biológica , Dieta , Doença/genética , Variação Genética , Humanos , Fenômenos Fisiológicos da Nutrição
19.
Prev Nutr Food Sci ; 19(4): 247-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25580388

RESUMO

The impact of folate on health and disease, particularly pregnancy complications and congenital malformations, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple countries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary issues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in blood, masking of vitamin B12 deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been associated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the excess use of PteGlu without consideration of an individual's specific phenotypic traits (e.g. genetic background and undiagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of dihydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous advances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well focused further research to better understand and to minimize any risk of mandatory folic acid fortification.

20.
J Nutrigenet Nutrigenomics ; 7(4-6): 264-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25969372

RESUMO

BACKGROUND AND AIMS: Circulating microRNAs (miRNAs) are linked to disease and are potential biomarkers. Vitamin D may modulate miRNA profiles, and vitamin D status has been linked to risk of disease, including cardiovascular disease and cancers. We hypothesise that genotypic variance influences these relationships. We examined the correlations between vitamin D intake and circulating levels of the miRNAs let-7a/b, and the involvement of two common vitamin D receptor (VDR) polymorphisms, BsmI and ApaI. METHODS: Two hundred participants completed food frequency and supplement questionnaires, and were assayed for circulating let-7b expression by qPCR. Polymorphisms were detected using restriction fragment length polymorphism-PCR. RESULTS: let-7b expression negatively correlated with vitamin D intake (rs=-0.20, p=0.005). The magnitude and direction of correlation were maintained in the presence of the BsmI restriction site (rs=-0.27, p=0.0005). However, in the absence of BsmI restriction site, the direction of the correlation was reversed (rs=+0.319, p=0.0497). These correlations were significantly different (z-score=2.64, p=0.0085). The correlation between vitamin D intake and let-7a was only significant in those without the ApaI restriction site. CONCLUSIONS: The correlation between vitamin D intake and let-7a/b expression in this cohort varies with VDR genotype. This study highlights the importance of considering underlying genotypic variance in miRNA expression studies and in nutritional epigenetics generally.


Assuntos
MicroRNAs/sangue , MicroRNAs/genética , Receptores de Calcitriol/genética , Vitamina D/administração & dosagem , Vitamina D/sangue , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Envelhecimento/genética , Estudos de Coortes , Feminino , Expressão Gênica , Genótipo , Humanos , Masculino , Nutrigenômica , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA