Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559052

RESUMO

In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.

2.
Biofabrication ; 16(1)2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37757814

RESUMO

Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Materiais Biocompatíveis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecnologia , Alicerces Teciduais/química
3.
Biosens Bioelectron ; 222: 114820, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527831

RESUMO

The development of space exploration technologies has positively impacted everyday life on Earth in terms of communication, environmental, social, and economic perspectives. The human body constantly fluctuates during spaceflight, even for a short-term mission. Unfortunately, technology is evolving faster than humans' ability to adapt, and many therapeutics entering clinical trials fail even after being subjected to vigorous in vivo testing due to toxicity and lack of efficacy. Therefore, tissue chips (also mentioned as organ-on-a-chip) with biosensors are being developed to compensate for the lack of relevant models to help improve the drug development process. There has been a push to monitor cell and tissue functions, based on their biological signals and utilize the integration of biosensors into tissue chips in space to monitor and assess cell microenvironment in real-time. With the collaboration between the Center for the Advancement of Science in Space (CASIS), the National Aeronautics and Space Administration (NASA) and other partners, they are providing the opportunities to study the effects of microgravity environment has on the human body. Institutions such as the National Institute of Health (NIH) and National Science Foundation (NSF) are partnering with CASIS and NASA to utilize tissue chips onboard the International Space Station (ISS). This article reviews the endless benefits of space technology, the development of integrated biosensors in tissue chips and their applications to better understand human biology, physiology, and diseases in space and on Earth, followed by future perspectives of tissue chip applications on Earth and in space.


Assuntos
Técnicas Biossensoriais , Voo Espacial , Ausência de Peso , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38915909

RESUMO

Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.

5.
J Vis Exp ; (185)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35876554

RESUMO

Various biomaterial scaffolds have been developed to guide cell adhesion and proliferation in hopes to promote specific functions for in vitro and in vivo uses. The addition of growth factors into these biomaterial scaffolds is generally done to provide an optimal cell culture environment, mediating cell differentiation and its subsequent functions. However, the growth factors in a conventional biomaterial scaffold are typically designed to be released upon implantation, which could result in unintended side effects on surrounding tissue or cells. Here, the DNA-inspired Janus base nano-matrix (JBNm) has successfully achieved a highly localized microenvironment with a layer-by-layer structure for self-sustainable cartilage tissue constructs. JBNms are self-assembled from Janus base nanotubes (JBNts), matrilin-3, and transforming growth factor beta-1 (TGF-ß1) via bioaffinity. The JBNm was assembled at a TGF-ß1:matrilin-3:JBNt ratio of 1:4:10, as this has been the determined ratio at which proper assembly into the layer-by-layer structure could occur. First, the TGF-ß1 solution was added to the matrilin-3 solution. Then, this mixture was pipetted several times to ensure sufficient homogeneity before the addition of the JBNt solution. This formed the layer-by-layer JBNm, after pipetting several times again. A variety of experiments were performed to characterize the layer-by-layer JBNm structure, JBNts alone, matrilin-3 alone, and TGF-ß1 alone. The formation of JBNm was studied with UV-Vis absorption spectra, and the structure of the JBNm was observed with transmission electron microscopy (TEM). As the innovative layer-by-layer JBNm scaffold is formed on a molecular scale, the fluorescent dye-labeled JBNm could be observed. The TGF-ß1 is confined within the inner layer of the injectable JBNm, which can prevent the release of growth factors to surrounding areas, promote localized chondrogenesis, and promote an anti-hypertrophic microenvironment.


Assuntos
Cartilagem , Fator de Crescimento Transformador beta1 , Materiais Biocompatíveis , Cartilagem/metabolismo , Condrogênese , Proteínas Matrilinas/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
6.
Pharmaceutics ; 13(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503889

RESUMO

Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments.

7.
J Vis Exp ; (159)2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32449715

RESUMO

A biomimetic NM was developed to serve as a tissue-engineering biological scaffold, which can enhance stem cell anchorage. The biomimetic NM is formed from JBNTs and FN through self-assembly in an aqueous solution. JBNTs measure 200-300 µm in length with inner hydrophobic hollow channels and outer hydrophilic surfaces. JBNTs are positively charged and FNs are negatively charged. Therefore, when injected into a neutral aqueous solution, they are bonded together via noncovalent bonding to form the NM bundles. The self-assembly process is completed within a few seconds without any chemical initiators, heat source, or UV light. When the pH of the NM solution is lower than the isoelectric point of FNs (pI 5.5-6.0), the NM bundles will self-release due to the presence of positively charged FN. NM is known to mimic the extracellular matrix (ECM) morphologically and hence, can be used as an injectable scaffold, which provides an excellent platform to enhance hMSC adhesion. Cell density analysis and fluorescence imaging experiments indicated that the NMs significantly increased the anchorage of hMSCs compared to the negative control.


Assuntos
Biomimética/métodos , Matriz Extracelular/metabolismo , Fibronectinas/farmacologia , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Adesão Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Fluorescência , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Nanotubos/ultraestrutura
8.
J Biomed Mater Res A ; 108(4): 984-991, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31904174

RESUMO

Mesenchymal stem cells (MSCs) have been widely applied in biomedicine due to their ability to differentiate into many different cell types and their ability to synthesize a broad spectrum of growth factors and cytokines that directly and indirectly influence other cells in their vicinity. To guide MSC infiltration to a bone fracture site, we developed a novel self-assembled Nano-Matrix which can be used as an injectable scaffold to repair bone fractures. The Nano-Matrix is formed by Janus base nanotubes (JBNTs) and fibronectin (FN). JBNTs are nucleobase-derived nanotubes mimicking collagen fibers, and FN is one of the cell adhesive glycoproteins which is responsible for cell-extracellular matrix interactions and guides stem cell migration and differentiation to desired cells types. Here, we demonstrated the successful fabrication and characterization of the JBNT/FN Nano-Matrix as well as its excellent bioactivity that encouraged human MSC migration and adhesion. This work lays a solid foundation for using the Nano-Matrix as an injectable approach to improve MSC retention and function during bone fracture healing.


Assuntos
Materiais Biomiméticos/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Adesão Celular , Forma Celular , Fibronectinas/metabolismo , Fluorescência , Humanos , Nanopartículas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura
9.
Artigo em Inglês | MEDLINE | ID: mdl-33709068

RESUMO

Degenerative Disc Disease (DDD) causes a nagging to severe back pain as well as numbing sensation to the extremities leading to loss of overall patients' height and weakness to leg muscles. Degenerative disc disease is often observed in aging patients as well as patients who have suffered from a back injury. Cervical Degenerative Disc Disease (CDDD) is a progressive condition that leads to the degeneration of the intervertebral discs supporting the cervical vertebral column. Anterior Cervical Interbody Fusion (ACIF) has been the longstanding treatment option for severe degenerative disc disease; however, ACIF presents various novel complications, necessitating numerous comparative device studies to reduce the negative effects of spinal fusion. Cervical disc arthroplasty, the recent focus of clinical attention, was one of the alternatives studied to mitigate the complications associated with vertebral fusion but presents its own disadvantages. These complications prompted further investigation and modifications that can be introduced into these devices. We will be discussing the nano-scale interactions between the implant and extracellular matrix play a crucial role in device integration and efficacy, providing an additional approach towards a device's overall success.

12.
J Med Chem ; 59(4): 1440-54, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26061247

RESUMO

The bromodomain containing proteins TRIM24 (tripartite motif containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are involved in the epigenetic regulation of gene expression and have been implicated in human cancer. Overexpression of TRIM24 correlates with poor patient prognosis, and BRPF1 is a scaffolding protein required for the assembly of histone acetyltransferase complexes, where the gene of MOZ (monocytic leukemia zinc finger protein) was first identified as a recurrent fusion partner in leukemia patients (8p11 chromosomal rearrangements). Here, we present the structure guided development of a series of N,N-dimethylbenzimidazolone bromodomain inhibitors through the iterative use of X-ray cocrystal structures. A unique binding mode enabled the design of a potent and selective inhibitor 8i (IACS-9571) with low nanomolar affinities for TRIM24 and BRPF1 (ITC Kd = 31 nM and ITC Kd = 14 nM, respectively). With its excellent cellular potency (EC50 = 50 nM) and favorable pharmacokinetic properties (F = 29%), 8i is a high-quality chemical probe for the evaluation of TRIM24 and/or BRPF1 bromodomain function in vitro and in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Desenho de Fármacos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Benzimidazóis/farmacocinética , Proteínas de Transporte/química , Proteínas de Ligação a DNA , Feminino , Humanos , Metilação , Camundongos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA