Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; : e202301145, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578225

RESUMO

Graphitic nanoplatelets (GnPs), edge-selectively carboxylated graphitic nanoplatelets (ECGnPs), are functionalized with a carboxylic acid at the edge increasing their surface area, and are highly dispersible in various solvents. However, there is a limit in that the basal plane remains intact because it is functionalized only in the part where the radical is generated at the edge. Here, we activate ECGnPs to have porous structures by flowing CO2 at 900 °C. Etching of the ECGnPs structure was performed through the Boudouard reaction, and the surface area increased from 579 m2 g-1 to a maximum of 2462 m2 g-1. In addition, the pore structure was investigated with various adsorption gases (CH4, Ar, CO2, H2, and N2) according to the reaction time. This study provides the overall green chemistry in that it utilizes CO2 from manufacturing to activation compared to the process of activating with conventional chemical treatment.

2.
J Am Chem Soc ; 146(19): 13142-13150, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38578677

RESUMO

Metal-carbon composites are extensively utilized as electrochemical catalysts but face critical challenges in mass production and stability. We report a scalable manufacturing process for ruthenium surface-embedded fabric electrocatalysts (Ru-SFECs) via conventional fiber/fabric manufacturing. Ru-SFECs have excellent catalytic activity and stability toward the hydrogen evolution reaction, exhibiting a low overpotential of 11.9 mV at a current density of 10 mA cm-2 in an alkaline solution (1.0 M aq KOH solution) with only a slight overpotential increment (6.5%) after 10,000 cycles, whereas under identical conditions, that of commercial Pt/C increases 6-fold (from 1.3 to 7.8 mV). Using semipilot-scale equipment, a protocol is optimized for fabricating continuous self-supported electrocatalytic electrodes. Tailoring the fiber processing parameters (tension and temperature) can optimize the structural development, thereby achieving good catalytic performance and mechanical integrity. These findings underscore the significance of self-supporting catalysts, offering a general framework for stable, binder-free electrocatalytic electrode design.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38684003

RESUMO

In this work, a relatively new class of materials, rare earth (RE) based high entropy oxides (HEO) are discussed in terms of the evolution of the oxygen vacant sites (Ov) content in their structure as the composition changes from binary to HEO using both experimental and computational tools; the composition of HEO under focus is the CeLaPrSmGdO due to the importance of ceria-related (fluorite) materials to catalysis. To unveil key features of quinary HEO structure, ceria-based binary CePrO and CeLaO compositions as well as SiO2, the latter as representative nonreducible oxide, were used and compared as supports for Ru (6 wt % loading). The role of the Ov in the HEO is highlighted for the ammonia production with particular emphasis on the N2 dissociation step (N2(ads) → Nads) over a HEO; the latter step is considered the rate controlling one in the ammonia production. Density functional theory (DFT) calculations and 18O2 transient isotopic experiments were used to probe the energy of formation, the population, and the easiness of formation for the Ov at 650 and 800 °C, whereas Synchrotron EXAFS, Raman, EPR, and XPS probed the Ce-O chemical environment at different length scales. In particular, it was found that the particular HEO composition eases the Ov formation in bulk, in medium (Raman), and in short (localized) order (EPR); more Ov population was found on the surface of the HEO compared to the binary reference oxide (CePrO). Additionally, HEO gives rise to smaller and less sharp faceted Ru particles, yet in stronger interaction with the HEO support and abundance of Ru-O-Ce entities (Raman and XPS). Ammonia production reaction at 400 °C and in the 10-50 bar range was performed over Ru/HEO, Ru/CePrO, Ru/CeLaO, and Ru/SiO2 catalysts; the Ru/HEO had superior performance at 10 bar compared to the rest of catalysts. The best performing Ru/HEO catalyst was activated under different temperatures (650 vs 800 °C) so to adjust the Ov population with the lower temperature maintaining better performance for the catalyst. DFT calculations showed that the HEO active site for N adsorption involves the Ov site adjacent to the adsorption event.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38554082

RESUMO

Fluoride is widely present in nature, and human exposure to it is generally regarded as inevitable. High levels of fluoride intake induce acute and chronic illnesses. To reduce potential harm to the general public, it is essential to create selective fluoride detectors capable of providing a colorimetric response for naked-eye detection without the need for sophisticated equipment. Here, we report a one-pot synthesis of four different diaminomaleonitrile-derived Schiff base sensors. The terephthalaldehyde adduct provided a strong color change visible to the naked eye at a F- concentration level as low as 2 ppm. From the evaluation against other anions, such as CN-, I-, Br-, Cl-, NO3-, PO43-, OAc-, and HSO4-, the molecular sensor displayed a visible color change exclusively upon exposure to fluoride, underscoring exceptional selectivity. As a key intermediate for understanding the mechanism, HF2- was confirmed by 19F nuclear magnetic resonance. Theoretical calculations suggested a deprotonation-triggered bathochromic shift brought about by the unique electronic structure of the sensor. Furthermore, the simple synthetic protocol from economically accessible materials allowed for the preparation of the compound on a large scale, rendering it a highly practical visual fluoride sensor.

5.
J Am Chem Soc ; 146(6): 3567-3584, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300989

RESUMO

Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.

6.
J Am Chem Soc ; 146(4): 2313-2318, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232075

RESUMO

Two-dimensional covalent organic frameworks (COFs) with uniform pores and large surface areas are ideal candidates for constructing advanced molecular sieving membranes. However, a fabrication strategy to synthesize a free-standing COF membrane with a high permselectivity has not been fully explored yet. Herein, we prepared a free-standing TpPa-SO3H COF membrane with vertically aligned one-dimensional nanochannels. The introduction of the sulfonic acid groups on the COF membrane provides abundant negative charge sites in its pore wall, which achieve a high water flux and an excellent sieving performance toward water-soluble drugs and dyes with different charges and sizes. Furthermore, the COF membrane exhibited long-term stability, fouling resistance, and recyclability in rejection performance. We envisage that this work provides new insights into the effect of ionic ligands on the design of a broad range of COF membranes for advanced separation applications.

7.
Nat Commun ; 14(1): 8093, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062017

RESUMO

Ruthenium dioxide is the most promising alternative to the prevailing but expensive iridium-based catalysts for the oxygen evolution reaction in proton-exchange membrane water electrolyzers. However, the under-coordinated lattice oxygen of ruthenium dioxide is prone to over-oxidation, and oxygen vacancies are formed at high oxidation potentials under acidic corrosive conditions. Consequently, ruthenium atoms adjacent to oxygen vacancies are oxidized into soluble high-valence derivatives, causing the collapse of the ruthenium dioxide crystal structure and leading to its poor stability. Here, we report an oxyanion protection strategy to prevent the formation of oxygen vacancies on the ruthenium dioxide surface by forming coordination-saturated lattice oxygen. Combining density functional theory calculations, electrochemical measurements, and a suite of operando spectroscopies, we showcase that barium-anchored sulfate can greatly impede ruthenium loss and extend the lifetime of ruthenium-based catalysts during acidic oxygen evolution, while maintaining the activity. This work paves a new way for designing stable and active anode catalysts toward acidic water splitting.

8.
ACS Appl Mater Interfaces ; 15(47): 54458-54465, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972319

RESUMO

Organic amine (R-NH2) reagents as dominant chemical sorbents for CO2 capture in industrial processes suffer from high energy compensation for regeneration. Herein, we, for the first time, report the finding of Co(III) coordinating with NH3 molecules regulating the interaction between NH3 and CO2 to electrostatic interactions instead of a chemical reaction and achieve CO2 capture under near-ambient conditions. NH3 coordinating with Co(III) significantly reduces its alkalinity and reactivity with CO2 owing to its lone-pair electron donation during coordination. Under a simple protocol, CO2 induces the crystallization of CO2@[Co(NH3)6][HSO4][SO4] clathrate into a hydrogen-bonded granatohedron cage from a cobaltic hexammine sulfate aqueous solution under a CO2 pressure of 56 and 142 kPa at 275 and 298 K, respectively, with a CO2 uptake weight content of 11.7%. We reveal that CO2 interacts with cobaltous hexammine via supramolecular interactions rather than chemical bonding. The clathrate spontaneously separates from the solution as single crystals and readily releases CO2 under ambient conditions in water for cyclic utilization without further treatment. In such a rapid supramolecular capture process, molecular recognition ensures exclusive CO2 selectivity, and soluble clathrate enables the spontaneous CO2 release at a low energy penalty, exhibiting excellent practical potential in carbon capture.

9.
Environ Sci Technol ; 57(48): 20380-20391, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37965815

RESUMO

Molecular separations involving solvents and organic impurities represent great challenges for environmental and water-intensive industries. Novel materials with intrinsic nanoscale pores offer a great choice for improvement in terms of energy efficiency and capital costs. Particularly, in applications where gradient and ordered separation of organic contaminants remain elusive, smart materials with switchable pores can offer efficient solutions. Here, we report a hierarchically networked porous organic cage membrane with dynamic control over pores, elucidating stable solvent permeance and tunable dye rejection over different molecular weights. The engineered cage membrane can spontaneously modulate its geometry and pore size from water to methanol and DMF in a reversible manner. The cage membrane exhibits ≥585.59 g mol-1 molecular weight cutoff preferentially in water and is impeded by methanol (799.8 g mol-1) and DMF (≈1017 g mol-1), reflecting 36 and 73% change in rejection due to self-regulation and the flexible network, respectively. Grazing incidence X-ray diffraction illustrates a clear peak downshift, suggesting an intrinsic structural change when the cage membranes were immersed in methanol or DMF. We have observed reversible structural changes that can also be tuned by preparing a methanol/DMF mixture and adjusting their ratio, thereby enabling gradient molecular filtration. We anticipate that such cage membranes with dynamic selectivity could be promising particularly for industrial separations and wastewater treatment.


Assuntos
Metanol , Água , Solventes , Porosidade , Cromatografia Líquida
10.
Acc Chem Res ; 56(19): 2642-2652, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728870

RESUMO

ConspectusAs renewable energy and CO2 utilization technologies progress to make a more significant contribution to global emissions reduction, carbon capture remains a critical component of the mission. Current CO2 capture technologies involve operations at point sources such as fossil fuel-based power plants or source-agnostic like in direct air capture. Each strategy has its own advantages and limitations, but in common, they all employ sorption-based methods with the use of sorbents strongly adhering to CO2. Amine solutions are the most widely used absorbents for industrial operations due to the robust chemical bonds formed between amines and CO2 under both dry and humid conditions, rendering excellent selectivity. Such strong binding, however, causes problematic regeneration. In contrast, purely physisorptive porous materials with high surface areas allow for the confinement of CO2 inside narrow pores/channels and have a lower regeneration energy demand but with decreased selectivity and capacity. The most promising solution would then be the unification of both types of sorbents in one system, which could bring about a practical adsorption-desorption process. In other words, the development of porous solid materials with tunable amine content is necessary to leverage the high contact surface of porous sorbents with the added ability to manipulate amine incorporation toward lower CO2 binding strength.To answer the call to uncover the most feasible amine chemistry in carbon capture, our group has devoted intense effort to the study of amine-based CO2 adsorbents for the past decade. Oriented along practicality, we put forth a principle for the design of our materials to be produced in no more than three synthetic steps with economically viable starting materials. Porous organic polymers with amine functionalities of various substitutions, meaning primary, secondary, and tertiary amines, were synthesized and studied for CO2 adsorption. Direct synthesis proved to be feasibly applicable for secondary and tertiary amine-incorporated porous polymers whereas primary-amine-based sorbents would be conveniently obtained via postsynthetic modifications. Sorbents based on tertiary amines exhibit purely physical adsorption behavior if the nitrogen atoms are placed adjacent to aromatic cores due to the conjugation effect that reduces the electron density of the amine. However, when such conjugation is inhibited, chemisorptive activity is observed. Secondary amine adsorbents, in turn, express a higher binding strength than tertiary amine counterparts, but both types can merit a strengthened binding by the physical impregnation of small-molecule amines. Sorbents with primary-amine tethers can be obtained via postsynthetic transformation of precursor functionalities, and for them, chemical adsorption is mainly at work. We conclude that mixed-amine systems could exhibit unprecedented binding mechanisms, resulting in exceptionally specific interactions that would be useful for the development of highly selective sorbents for CO2.

12.
Nat Commun ; 14(1): 2958, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221228

RESUMO

Electrochemical CO2 reduction (CO2R) is an approach to closing the carbon cycle for chemical synthesis. To date, the field has focused on the electrolysis of ambient pressure CO2. However, industrial CO2 is pressurized-in capture, transport and storage-and is often in dissolved form. Here, we find that pressurization to 50 bar steers CO2R pathways toward formate, something seen across widely-employed CO2R catalysts. By developing operando methods compatible with high pressures, including quantitative operando Raman spectroscopy, we link the high formate selectivity to increased CO2 coverage on the cathode surface. The interplay of theory and experiments validates the mechanism, and guides us to functionalize the surface of a Cu cathode with a proton-resistant layer to further the pressure-mediated selectivity effect. This work illustrates the value of industrial CO2 sources as the starting feedstock for sustainable chemical synthesis.

13.
Angew Chem Int Ed Engl ; 62(28): e202304378, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37042423

RESUMO

Porous poly(aryl thioether)s offer stability and electronic tunability by robust sulfur-aryl conjugated architecture, but synthetic access is hindered due to limited control over the nucleophilic nature of sulfides and the air sensitivity of aromatic thiols. Here, we report a simple, one-pot, inexpensive, regioselective synthesis of highly porous poly(aryl thioether)s through polycondensation of perfluoroaromatic compounds with sodium sulfide. The unprecedented temperature-dependent para-directing formation of thioether linkages leads to a stepwise transition of the polymer extension into a network, thereby allowing fine control of the porosity and optical band gaps. The obtained porous organic polymers with ultra-microporosity (<1 nm) and sulfur as the surface functional groups show size-dependent separation of organic micropollutants and selective removal of mercury ions from water. Our findings offer easy access to poly(aryl thioether)s with accessible sulfur functionalities and higher complexity, which will help in realizing advanced synthetic designs in applications such as adsorption, (photo)catalysis, and (opto)electronics.

14.
Chem Rev ; 123(8): 4602-4634, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37023354

RESUMO

Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.

15.
Nat Commun ; 14(1): 2096, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055400

RESUMO

Chemical modifications of porous materials almost always result in loss of structural integrity, porosity, solubility, or stability. Previous attempts, so far, have not allowed any promising trend to unravel, perhaps because of the complexity of porous network frameworks. But the soluble porous polymers, the polymers of intrinsic microporosity, provide an excellent platform to develop a universal strategy for effective modification of functional groups for current demands in advanced applications. Here, we report complete transformation of PIM-1 nitriles into four previously inaccessible functional groups - ketones, alcohols, imines, and hydrazones - in a single step using volatile reagents and through a counter-intuitive non-solvent approach that enables surface area preservation. The modifications are simple, scalable, reproducible, and give record surface areas for modified PIM-1s despite at times having to pass up to two consecutive post-synthetic transformations. This unconventional dual-mode strategy offers valuable directions for chemical modification of porous materials.

16.
Chemistry ; 28(72): e202202340, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36169493

RESUMO

Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g-1 , with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.


Assuntos
Mercúrio , Polímeros , Polímeros/química , Mercúrio/química , Compostos de Sulfidrila/química , Porosidade , Adsorção , Enxofre/química
17.
Angew Chem Int Ed Engl ; 60(41): 22478-22486, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34383371

RESUMO

Ordered mesoporous carbon materials offer robust network of organized pores for energy storage and catalysis applications, but suffer from time-consuming and intricate preparations hindering their widespread use. Here we report a new and rapid synthetic route for a N-doped ordered mesoporous carbon structure through a preferential heating of iron oxide nanoparticles by microwaves. A nanoporous covalent organic polymer is first formed in situ covering the hard templates of assembled nanoparticles, paving the way for a long-range order in a carbonaceous nanocomposite precursor. Upon removal of the template, a well-defined cubic mesoporous carbon structure was revealed. The ordered mesoporous carbon was used in solid state hydrogen storage as a host scaffold for NaAlH4 , where remarkable improvement in hydrogen desorption kinetics was observed. The state-of-the-art lowest activation energy of dehydrogenation as a single step was attributed to their ordered pore structure and N-doping effect.

18.
ACS Appl Mater Interfaces ; 13(24): 28639-28649, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100583

RESUMO

Self-assembly of block copolymers (BCPs) is an alternative patterning technique that promises high resolution and density multiplication with lower costs. The defectivity of the resulting nanopatterns remains too high for many applications in microelectronics and is exacerbated by small variations of processing parameters, such as film thickness, and fluctuations of solvent vapor pressure and temperature, among others. In this work, a solvent vapor annealing (SVA) flow-controlled system is combined with design of experiments (DOE) and machine learning (ML) approaches. The SVA flow-controlled system enables precise optimization of the conditions of self-assembly of the high Flory-Huggins interaction parameter (χ) hexagonal dot-array forming BCP, poly(styrene-b-dimethylsiloxane) (PS-b-PDMS). The defects within the resulting patterns at various length scales are then characterized and quantified. The results show that the defectivity of the resulting nanopatterned surfaces is highly dependent upon very small variations of the initial film thicknesses of the BCP, as well as the degree of swelling under the SVA conditions. These parameters also significantly contribute to the quality of the resulting pattern with respect to grain coarsening, as well as the formation of different macroscale phases (single and double layers and wetting layers). The results of qualitative and quantitative defect analyses are then compiled into a single figure of merit (FOM) and are mapped across the experimental parameter space using ML approaches, which enable the identification of the narrow region of optimum conditions for SVA for a given BCP. The result of these analyses is a faster and less resource intensive route toward the production of low-defectivity BCP dot arrays via rational determination of the ideal combination of processing factors. The DOE and machine learning-enabled approach is generalizable to the scale-up of self-assembly-based nanopatterning for applications in electronic microfabrication.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119881, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33971439

RESUMO

A structurally characterized novel dual-pocketed tetra-conjugated bisphenol-based chromophore (fluorescence = 652 nm) was synthesized in gram scale in ~90% yield from its tetraaldehyde. Highly selective, naked-eye detection of CN- (DMSO/H2O) was confirmed by interferent testing. A detection limit of 0.38 µM, within the permissible limit of CN- concentration in drinking water was achieved as mandated by WHO. The "reversibility" study shows potential applicability and reusability of Sen. Moreover, cost-effective and on-site interfaces, application tools such as fabricated cotton swabs, plastic Petri dishes, and filter papers further demonstrated the specific selectivity of Sen for the toxic CN-. In addition, an easily available and handy smartphone-assisted "Color Picker" app was utilized to help estimate the concentration of CN- ion present. A dual phenol deprotonation mechanism is active and supported by 1H NMR spectroscopic data and DFT calculation results.

20.
Adv Sci (Weinh) ; 8(8): 2001676, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898165

RESUMO

Pyrazole-linked covalent organic polymer is synthesized using an asynchronous double Schiff base from readily available monomers. The one-pot reaction features no metals as a building block or reagent, hence facilitating the structural purity and industrial scalability of the design. Through a single-crystal study on a model compound, the double Schiff base formation is found to follow syn addition, a kinetically favored product, suggesting that reactivity of the amine and carbonyls dictate the order and geometry of the framework building. The highly porous pyrazole polymer COP-214 is chemically resistant in reactive conditions for over two weeks and thermally stable up to 425 °C in air. COP-214 shows well-pronounced gas capture and selectivities, and a high CO2/N2 selectivity of 102. The strongly coordinating pyrazole sites show rapid uptake and quantitative selectivity of Pd (II) over several coordinating metals (especially Pt (II)) at all pH points that are tested, a remarkably rare feature that is best explained by detailed analysis as the size-selective strong coordination of Pd onto pyrazoles. Density functional theory (DFT) calculations show energetically favorable Pd binding between the metal and N-sites of COP-214. The polymer is reusable multiple times without loss of activity, providing great incentives for an industrial prospect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA