Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 26(8): 1551-1568, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32801486

RESUMO

ABSTRACT: Chickpea (Cicer arietinum) belonging to the Fabaceae family is a major legume crop and is a good source of protein and carbohydrates. Industrialization has resulted in soil contamination with heavy metals such as cadmium. Adsorption of cadmium by plants can lead to reduced yields and heavy metal toxicity. In the current study, changes in the anatomical, morphological features and biochemical properties of the chickpea plant were evaluated. Two indexes DWSTI and PHSTI were determined. Anatomically, there was a change in the number of xylem poles within the root structure which was most significant at treatments of 125 µg cadmium. There was also a noticeable change in leaf pigmentation, the total phenolics and soluble protein in the plant. Cadmium levels were elevated attaining concentrations of 0.21, 0.40 and 0.52 mg per gram dry weight in plants exposed to 62, 125 and 250 µg/g Perlit cadmium after a period of 30 days. A noticeable increase in the level of cadmium in the plant was observed. Two PCS genes, glutathione gamma-glutamylcysteinyltransferase 1 and glutathione gamma-glutamylcysteinyltransferase and four FC genes, 4 proteins and 4 mRNA were detected in chickpeas. Bioinformatics tools were utilized to predict enzyme structure and binding sites. Chickpea may be classified as a cadmium hyperaccumulator and may be considered for use in phytoremediation. This study provides a better understanding with regards to the response of chickpeas to cadmium and the genetic mechanism by which the plant regulates heavy metal toxicity.

2.
J Chem Phys ; 150(24): 244704, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255092

RESUMO

The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H2 gas, as well as the formation of carbidic and graphitic surface carbon.

3.
Ecotoxicol Environ Saf ; 163: 7-18, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031266

RESUMO

Phytochelatin synthase isolated from microorganisms, yeasts, algae and plant, serve a fundamental role in reducing heavy metals. In this research the in silico PCS gene structure (SoPCS) of sugarcane, its secondary and 3D protein structure, physicochemical properties, cell localization and phylogenetic tree were predicted utilizing bioinformatics tools. SoPCS expression in the leaves and roots of sugarcane in tissue culture treated with cadmium was also studied utilizing real time PCR. The predicted SoPCS gene contains 1524 nucleotides, a protein encoded with 508 amino acids of which the molecular weight is 55953.3 Da, 6 exons and 5 introns. The subcellular position of the enzyme is mitochondrion or cytoplasmic. Two domains belonging to the phytochelatin synthase family with similar features was found in Pfam having more than 97% similarity with the predicted SoPCS protein. Phylogeny analyses of plant species were well isolated from other organisms. Ten disulfide-bonded cysteines were excluded from the structure of SoPCS. The predicted 3D structure of SoPCS showed that it is able to bind to L-gamma-glutamylcysteine as substrate. The binding site sequence of PCS included amino acids 52(Q),55(P),56(A),57(F), 58(C),103(G),104(I),151(S),163(G),165(F),206(D), 213(R). The common amino acid with conserved sequence in the binding site of the plant was 103Gly. Gene expression indicated that SoPCS has an important role in the response of sugarcane to cadmium with potential use in genetic engineering to remove metal contaminants in the environment. This is the first characterization of a PCS from sugarcane.


Assuntos
Aminoaciltransferases/genética , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Saccharum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Sequência de Aminoácidos , Sítios de Ligação , Biologia Computacional , Simulação por Computador , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo
4.
Langmuir ; 34(8): 2630-2636, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29405715

RESUMO

Selenols are considered as an alternative to thiols in self-assembled monolayers, but the Se-C bond is one limiting factor for their usefulness. In this study, we address the stability of the Se-C bond by a combined experimental and theoretical investigation of gas-phase-deposited hexane selenol (CH3(CH2)5SeH) on Au(111) using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory (DFT). Experimentally, we find that initial adsorption leaves atomic Se on the surface without any carbon left on the surface, whereas further adsorption generates a saturated selenolate layer. The Se 3d component from atomic Se appears at 0.85 eV lower binding energy than the selenolate-related component. DFT calculations show that the most stable structure of selenols on Au(111) is in the form of RSe-Au-SeR complexes adsorbed on the unreconstructed Au(111) surface. This is similar to thiols on Au(111). Calculated Se 3d core-level shifts between elemental Se and selenolate in this structure nicely reproduce the experimentally recorded shifts. Dissociation of RSeH and subsequent formation of RH are found to proceed with high barriers on defect-free Au(111) terraces, with the highest barrier for scissoring R-Se. However, at steps, these barriers are considerably lower, allowing for Se-C bond breaking and hexane desorption, leaving elemental Se at the surface. Hexane is formed by replacing the Se-C bond with a H-C bond by using the hydrogen liberated from the selenol to selenolate transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA