Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 4869, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849328

RESUMO

The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120 °C within 30 s. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.

2.
ACS Nano ; 18(14): 10312-10323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533779

RESUMO

Defect engineering is essential for the development of efficient electrocatalysts at the atomic level. While most work has focused on various vacancies as effective catalytic modulators, little attention has been paid to the relation between the local atomic environment of vacancies and catalytic activities. To face this challenge, we report a facile synthetic approach to manipulate the local atomic environments of vacancies in MoS2 with tunable Mo-to-S ratios. Our studies indicate that the MoS2 with more Mo terminated vacancies exhibits better hydrogen evolution reaction (HER) performance than MoS2 with S terminated vacancies and defect-free MoS2. The improved performance originates from the adjustable orbital orientation and distribution, which is beneficial for regulating H adsorption and eventually boosting the intrinsic per-site activity. This work uncovers the underlying essence of the local atomic environment of vacancies on catalysis and provides a significant extension of defect engineering for the rational design of transition metal dichalcogenides (TMDs) catalysts and beyond.

3.
Adv Mater ; 36(23): e2314209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331431

RESUMO

Electrochemically reconstructed Cu-based catalysts always exhibit enhanced CO2 electroreduction performance; however, it still remains ambiguous whether the reconstructed Cu vacancies have a substantial impact on CO2-to-C2+ reactivity. Herein, Cu vacancies are first constructed through electrochemical reduction of Cu-based nanowires, in which high-angle annular dark-field scanning transmission electron microscopy image manifests the formation of triple-copper-vacancy associates with different concentrations, confirmed by positron annihilation lifetime spectroscopy. In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy discloses the triple-copper-vacancy associates favor *CO adsorption and fast *CO dimerization. Moreover, density-functional-theory calculations unravel the triple-copper-vacancy associates endow the nearby Cu sites with enriched and disparate local charge density, which enhances the *CO adsorption and reduces the CO-CO coupling barrier, affirmed by the decreased *CO dimerization energy barrier by 0.4 eV. As a result, the triple-copper-vacancy associates confined in Cu nanowires achieve a high Faradaic efficiency of over 80% for C2+ products in a wide current density range of 400-800 mA cm-2, outperforming most reported Cu-based electrocatalysts.

4.
Mater Horiz ; 11(6): 1548-1559, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38263896

RESUMO

Self-healing elastomers usually show poor mechanical properties and environmental stability, and they cannot self-report mechanical/chemical damage. Herein, an innovative design strategy is reported that combines symmetric/asymmetric chain extenders to create large yet disordered hard domains within polyurethane (PU) elastomers, enabling the integration of mechanical robustness and self-reporting and self-healing capabilities to overcome both mechanical and chemical damage. Specifically, large yet disordered hard domains were created by governing the molar contents of asymmetric fluorescent 2-(4-aminophenyl)-5-aminobenzimidazole (PABZ) and symmetric 4-aminophenyl disulfide (APDS). Such a structural feature led to a small free-volume fraction, prominent strain-induced crystallization (SIC), and high energy of dissipation, enabling the PU elastomer to display outstanding mechanical strength (60.7 MPa) and toughness (177.9 MJ m-3). Meanwhile, the loose stacking of disordered hard domains imposed small restriction on network chains and imparted the network with high relaxation dynamics, leading to high healing efficiency (97.8%). More importantly, the fluorescence intensity was stimulus-responsive and thus the PU elastomer could self-report mechanical/chemical damage and healing processes. The PU elastomer also showed potential application prospects in information encoding and encryption. Furthermore, selecting polydimethylsiloxane as one of the soft segments could effectively endow the PU elastomer with intrinsic hydrophobicity. Therefore, this work provides valuable guidance for designing multi-functional materials with anti-counterfeiting, self-reporting, and healing properties as well as high mechanical properties and hydrophobicity.

5.
Environ Pollut ; 344: 123318, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218545

RESUMO

Hematite is an iron oxide commonly found in terrestrial environments and plays an essential role in controlling the migration of heavy metal(loid)s in groundwater and sediments. Although defects were shown to exist both in naturally occurring and laboratory-synthesized hematite, their influences on the immobilization of heavy metal(loid)s remain poorly understood. In this study, hematite samples with tunable vacancy defect concentrations were synthesized to evaluate their adsorption capacities for the cation Pb(II) and for the oxyanion As(V). The defects in hematite were characterized using XRD, TEM-EDS mapping, position annihilation lifetime spectroscopy, and XAS. The surface charge characteristics in defective hematite were investigated using zeta potential measurements. We found that Fe vacancies were the primary defect type in the hematite structure. Batch experiments confirmed that Fe vacancies in hematite promoted As(V) adsorption, while they decreased Pb(II) adsorption. The reason for the opposite effects of Fe vacancies on Pb(II) and As(V) immobilization was investigated using DFT calculations and EXAFS analysis. The results revealed that Fe vacancies altered As-Fe coordination from a monodentate to a bidentate complex and increased the length of the Pb-Fe bond on the hematite surface, thereby leading to an increase in As(V) bonding strength, while decreasing Pb(II) adsorption affinity. In addition, the zeta potential analysis demonstrated that the presence of Fe vacancies led to an increase in the isoelectric point (IEP) of hematite samples, which therefore decreased the attraction for the cation Pb(II) and increased the attraction for the oxyanion As(V). The combination of these two effects caused by defects contributed to the contrasting difference between cation Pb(II) and oxyanion As(V) immobilization by defective hematite. Our study therefore provides new insights into the migration and fate of toxic heavy metal(loid)s controlled by iron minerals.


Assuntos
Compostos Férricos , Chumbo , Compostos Férricos/química , Ferro/química , Minerais/química , Adsorção
6.
Adv Mater ; 36(9): e2308434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37897665

RESUMO

The strength and toughness of thermoset epoxy resins are generally mutually exclusive, as are the high performance and rapid recyclability. Experimentally determined mechanical strength values are usually much lower than their theoretical values. The preparation of thermoset epoxy resins with high modulus, high toughness, ultrastrong strength, and highly efficient recyclability is still a challenge. Here, novel hyperbranched epoxy resins (Bn, n = 6, 12, 24) with imide structures by a thiol-ene click reaction. Bn shows an excellent comprehensive function in simultaneously improving the strength, modulus, toughness, low-temperature resistance, and degradability of diglycidyl ether of bisphenol-A (DGEBA). All the mechanical properties first increase and then decrease with minimization of the free volume properties. The improvement is attributable to uniform molecular holes or free volume by a molecular mixture of linear and hyperbranched topological structures. The precise measurement and controllability of the molecular free volume properties of epoxy resins is first discovered, as well as the imide structure degradation of crosslinked epoxy resins. The two conflicts are successfully resolved between strength and toughness and between high performance during service and high efficiency during degradation. These findings provide a route for designing ultrastrong, tough, and recyclable thermoset epoxy resins.

7.
Angew Chem Int Ed Engl ; 62(49): e202313325, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37818672

RESUMO

Photocatalytic organic functionalization reactions represent a green, cost-effective, and sustainable synthesis route for value-added chemicals. However, heterogeneous photocatalysis is inefficient in directly activating ammonia molecules for the production of high-value-added nitrogenous organic products when compared with oxygen activation in the formation of related oxygenated compounds. In this study, we report the heterogeneous photosynthesis of benzonitriles by the ammoxidation of benzyl alcohols (99 % conversion, 93 % selectivity) promoted using BiOBr nanosheets with surface vacancy associates. In contrast, the main reaction of catalysts with other types of vacancy sites is the oxidation of benzyl alcohol to benzaldehyde or benzoic acid. Experimental measurements and theoretical calculations have demonstrated a specificity of vacancy type with respect to product selectivity, which arises from the adsorption and activation of NH3 and O2 that is required to promote subsequent C-N coupling and oxidation to nitrile. This study provides a better understanding of the role of vacancies as catalytic sites in heterogeneous photocatalysis.

8.
Environ Sci Technol ; 57(33): 12453-12464, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37561149

RESUMO

Hematite is a common iron oxide in natural environments, which has been observed to influence the transport and fate of arsenate by its association with hematite. Although oxygen vacancies were demonstrated to exist in hematite, their contributions to the arsenate immobilization have not been quantified. In this study, hematite samples with tunable oxygen vacancy defect (OVD) concentrations were synthesized by treating defect-free hematite using different NaBH4 solutions. The vacancy defects were characterized by positron annihilation lifetime spectroscopy, Doppler broadening of annihilation radiation, extended X-ray absorption fine structure (EXAFS), thermogravimetric mass spectrometry (TG-MS), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The results revealed that oxygen vacancy was the primary defect type existing on the hematite surface. TG-MS combined with EPR analysis allowed quantification of OVD concentrations in hematite. Batch experiments revealed that OVDs had a positive effect on arsenate adsorption, which could be quantitatively described by a linear relationship between the OVD concentration (Cdef, mmol m-2) and the enhanced arsenate adsorption amount caused by defects (ΔQm, µmol m-2) (ΔQm = 20.94 Cdef, R2 = 0.9813). NH3-diffuse reflectance infrared Fourier transform (NH3-DRIFT) analysis and density functional theory (DFT) calculations demonstrated that OVDs in hematite were beneficial to the improvement in adsorption strength of surface-active sites, thus considerably promoting the immobilization of arsenate.


Assuntos
Arseniatos , Compostos Férricos , Compostos Férricos/química , Adsorção
9.
J Am Chem Soc ; 145(30): 16852-16861, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466142

RESUMO

The inert C(sp3)-H bond and easy overoxidation of toluene make the selective oxidation of toluene to benzaldehyde a great challenge. Herein, we present that a photocatalyst, constructed with a small amount (1 mol %) of amorphous BiOCl nanosheets assembled on TiO2 (denoted as 0.01BOC/TiO2), shows excellent performance in toluene oxidation to benzaldehyde, with 85% selectivity at 10% conversion, and the benzaldehyde formation rate is up to 1.7 mmol g-1 h-1, which is 5.6 and 3.7 times that of bare TiO2 and BOC, respectively. In addition to the charge separation function of the BOC/TiO2 heterojunction, we found that the amorphous structure of BOC endows its abundant surface oxygen vacancies (Ov), which can further promote the charge separation. Most importantly, the surface Ov of amorphous BOC can efficiently adsorb and activate O2, and amorphous BOC makes the product, benzaldehyde, easily desorb from the catalyst surface, which alleviates the further oxidation of benzaldehyde, and results in the high selectivity. This work highlights the importance of the microstructure based on heterojunctions, which is conducive to the rational design of photocatalysts with high performance in organic synthesis.

11.
Nat Commun ; 14(1): 2732, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169752

RESUMO

The lack of high-performance and substantial supply of anion-exchange membranes is a major obstacle to future deployment of relevant electrochemical energy devices. Here, we select two isomers (m-terphenyl and p-terphenyl) and balance their ratio to prepare anion-exchange membranes with well-connected and uniformly-distributed ultramicropores based on robust chemical structures. The anion-exchange membranes display high ion-conducting, excellent barrier properties, and stability exceeding 8000 h at 80 °C in alkali. The assembled anion-exchange membranes present a desirable combination of performance and durability in several electrochemical energy storage devices: neutral aqueous organic redox flow batteries (energy efficiency of 77.2% at 100 mA cm-2, with negligible permeation of redox-active molecules over 1100 h), water electrolysis (current density of 5.4 A cm-2 at 1.8 V, 90 °C, with durability over 3000 h), and fuel cells (power density of 1.61 W cm-2 under a catalyst loading of 0.2 mg cm-2, with open-circuit voltage durability test over 1000 h). As a demonstration of upscaled production, the anion-exchange membranes achieve roll-to-roll manufacturing with a width greater than 1000 mm.

12.
Adv Mater ; 35(31): e2302538, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37120752

RESUMO

The slow charge dynamics and large activation energy of CO2 severely hinder the efficiency of CO2 photoreduction. Defect engineering is a well-established strategy, while the function of common zero-dimensional defects is always restricted to promoting surface adsorption. In this work, a gradient layer of tungsten vacancies with a thickness of 3-4 nm is created across Bi2 WO6 nanosheets. This gradient layer enables the formation of an inner-to-outer tandem homojunction with an internal electric field, which provides a strong driving force for the migration of photoelectrons from the bulk to the surface. Meanwhile, W vacancies change the coordination environment around O and W atoms, leading to an alteration in the basic sites and the mode of CO2 adsorption from weak/strong adsorption to moderate adsorption, which ultimately decreases the formation barrier of the key intermediate *COOH and facilitates the conversion thermodynamics for CO2 . Without any cocatalyst and sacrificial reagent, W-vacant Bi2 WO6 shows an outstanding photocatalytic CO2 reduction performance with a CO production rate of 30.62 µmol g-1  h-1 , being one of the best catalysts in similar reaction systems. This study reveals that gradient vacancies as a new type of defect will show huge potential in regulating charge dynamics and catalytic reaction thermodynamics.

13.
Chem Sci ; 14(6): 1397-1402, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794176

RESUMO

The cycloaddition of CO2 with epoxides towards cyclic carbonates provides a promising pathway for CO2 utilization. Given the crucial role of epoxide ring opening in determining the reaction rate, designing catalysts with rich active sites for boosting epoxide adsorption and C-O bond cleavage is necessary for gaining efficient cyclic carbonate generation. Herein, by taking two-dimensional FeOCl as a model, we propose the construction of electron-donor and -acceptor units within a confined region via vacancy-cluster engineering to boost epoxide ring opening. By combing theoretical simulations and in situ diffuse reflectance infrared Fourier-transform spectroscopy, we show that the introduction of Fe-Cl vacancy clusters can activate the inert halogen-terminated surface and provide reactive sites containing electron-donor and -acceptor units, leading to strengthened epoxide adsorption and promoted C-O bond cleavage. Benefiting from these, FeOCl nanosheets with Fe-Cl vacancy clusters exhibit enhanced cyclic carbonate generation from CO2 cycloaddition with epoxides.

14.
Innovation (Camb) ; 3(6): 100334, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36339950

RESUMO

Polymers of intrinsic microporosity (PIMs), integrating unique microporous structure and solution-processability, are one class of the most promising membrane materials for energy-efficient gas separations. However, the micropores generated from inefficient chain packing often exhibit wide pore size distribution, making it very challenging to achieve efficient olefin/paraffin separations. Here, we propose a coordination-driven reconstruction (CDR) strategy, where metal ions are incorporated into amidoxime-functionalized PIM-1 (AO-PIM) to in situ generate coordination crosslinking networks. By varying the type and content of metal ions, the resulting crosslinking structures can be optimized, and the molecular sieving capability of PIM membranes can be dramatically enhanced. Particularly, the introduction of alkali or alkaline earth metals renders more precise micropores contributing to superior C3H6/C3H8 separation performance. K+ incorporated AO-PIM membranes exhibit a high ideal C3H6/C3H8 selectivity of 50, surpassing almost all the reported polymer membranes. Moreover, the coordination crosslinking structure significantly improves the membrane stability under higher pressure as well as the plasticization resistant performance. We envision that this straightforward and generic CDR strategy could potentially unlock the potentials of PIMs for olefin/paraffin separations and many other challenging gas separations.

15.
Angew Chem Int Ed Engl ; 61(51): e202214490, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36307955

RESUMO

The chemical conversion of CO2 to long-chain chemicals is considered as a highly attractive method to produce value-added organics, while the underlying reaction mechanism remains unclear. By constructing surface vacancy-cluster-mediated solid frustrated Lewis pairs (FLPs), the 100 % atom-economical, efficient chemical conversion of CO2 to dimethyl carbonate (DMC) was realized. By taking CeO2 as a model system, we illustrate that FLP sites can efficiently accelerate the coupling and conversion of key intermediates. As demonstrated, CeO2 with rich FLP sites shows improved reaction activity and achieves a high yield of DMC up to 15.3 mmol g-1 . In addition, by means of synchrotron radiation in situ diffuse reflectance infrared Fourier-transform spectroscopy, combined with density functional theory calculations, the reaction mechanism on the FLP site was investigated systematically and in-depth, providing pioneering insights into the underlying pathway for CO2 chemical conversion to long-chain chemicals.

16.
Adv Mater ; 34(42): e2205933, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35948462

RESUMO

The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.

17.
J Am Chem Soc ; 144(23): 10220-10229, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35586909

RESUMO

Membranes of high ion permselectivity are significant for the separation of ion species at the subnanometer scale. Here, we report porous organic cage (i.e., CC3) membranes with hierarchical channels including discrete internal cavities and cage-aligned external cavities connected by subnanometer-sized windows. The windows of CC3 sieve monovalent ions from divalent ones and the dual nanometer-sized cavities provide pathways for fast ion transport with a flux of 1.0 mol m-2 h-1 and a mono-/divalent ion selectivity (e.g., K+/Mg2+) up to 103, several orders of magnitude higher than the permselectivities of reported membranes. Molecular dynamics simulations illustrate the ion transport trajectory from the external to internal cavity via the CC3 window, where ions migrate in diverse hydration states following the energy barrier sequence of K+ < Na+ < Li+ ≪ Mg2+. This work sheds light on ion transport properties in porous organic cage channels of discrete frameworks and offers guidelines for developing membranes with hierarchical channels for efficient ion separation.


Assuntos
Lítio , Sódio , Transporte de Íons , Íons , Porosidade , Sódio/metabolismo
18.
ACS Appl Mater Interfaces ; 14(15): 17479-17485, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35389622

RESUMO

Exploring new solid electrolytes (SEs) for lithium-ion conduction is significant for the development of rechargeable all-solid-state lithium batteries. Here, a lead-free organic-inorganic halide perovskite, MASr0.8Li0.4Cl3 (MA = methylammonium, CH3NH3 in formula), is reported as a new SE for Li-ion conduction due to its highly symmetric crystal structure, inherent soft lattice, and good tolerance for composition tunability. Via density functional theory calculations, we demonstrate that the hybrid perovskite framework can allow fast Li-ion migration without the collapse of the crystal structure. The influence of the lithium content in MASr1-xLi2xCl3 (x = 0.1, 0.2, 0.3, or 0.4) on Li+ migration is systematically investigated. At the lithium content of x = 0.2, the MASr0.8Li0.4Cl3 achieves the room-temperature lithium ionic conductivity of 7.0 × 10-6 S cm-1 with a migration energy barrier of ∼0.47 eV. The lithium-tin alloy (Li-Sn) symmetric cell exhibits stable electrochemical lithium plating/stripping for nearly 100 cycles, indicating the alloy anode compatibility of the MASr0.8Li0.4Cl3 SE. This lead-free organic-inorganic halide perovskite SE will open a new avenue for exploring new SEs.

19.
Biosens Bioelectron ; 196: 113695, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688111

RESUMO

The intrinsically fragile nature and leakage of the enzymes is a major obstacle for the commercial sensor of a continuous glucose monitoring system. Herein, a dual confinement effect is developed in a three dimensional (3D) nanocage-based zeolite imidazole framework (NC-ZIF), during which the high-loading enzymes can be well encapsulated with unusual bioactivity and stability. The shell of NC-ZIF sets the first confinement to prevent enzymes leakage, and the interior nanocage of NC-ZIF provides second confinement to immobilize enzymes and offers a spacious environment to maintain their conformational freedom. Moreover, the mesoporosity of the formed NC-ZIF can be precisely controlled, which can effectively enhance the mass transport. The resulted GOx/Hemin@NC-ZIF multi-enzymes system could not only realize rapid detection of glucose by colorimetric and electrochemical sensors with high catalytic cascade activity (with an 8.3-fold and 16-fold enhancements in comparison with free enzymes in solution, respectively), but also exhibit long-term stability, excellent selectivity and reusability. More importantly, the based wearable sweatband sensor measurement results showed a high correlation (>0.84, P < 0.001) with the levels measured by commercial glucometer. The reported dual confinement strategy opens up a window to immobilize enzymes with enhanced catalytic efficiency and stability for clinical-grade noninvasive continuous glucose sensor.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Biocatálise , Glicemia , Automonitorização da Glicemia , Enzimas Imobilizadas/metabolismo , Glucose , Glucose Oxidase/metabolismo
20.
ACS Appl Mater Interfaces ; 13(49): 58936-58948, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34870964

RESUMO

In this study, a series of Cu2+x-yInySe (-0.3 ≤ x ≤ 0.2 and 0 ≤ y ≤ 0.05) samples were prepared by melting and the spark plasma sintering method. X-ray diffraction measurements indicate that the Cu-deficient samples (x = -0.3 y = 0 and x = -0.2 y = 0) prefer to form the cubic phase (ß-Cu2Se). Adding excessive Cu or introducing In atoms into the Cu2Se matrix triggers a phase transition from the ß to α phase. Positron lifetime measurements confirm the reduction in Cu vacancy concentration by adding excessive Cu or introducing In atoms into Cu2Se, which causes a dramatic decrease in carrier concentration from 1.59 × 1021 to 5.0 × 1019 cm-3 at room temperature. The samples with In contents of 0.01 and 0.03 show a high power factor of about 1 mW m-1 K-2 at room temperature due to the optimization of the carrier concentration. Meanwhile, the excess Cu content and doping of In atoms also favor the formation of nanopores. These pores have strong interaction with phonons, leading to remarkable reduction in lattice thermal conductivity. Finally, a high ZT value of about 1.44 is achieved at 873 K in the Cu1.99In0.01Se (x = 0 and y = 0.01) sample, which is about twice that of the Cu-deficient sample (Cu1.7Se). Our work provides a viable insight into tuning vacancy defects to improve efficiently the electrical and thermal transport performance for copper-based thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA