Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063758

RESUMO

We investigated the impact of CaCO3 addition on the density and compressive strength of calcium aluminate cement (CAC)-based cementitious materials in binder jetting additive manufacturing (BJAM). To confirm the formation of a uniform powder bed, we examined the powder flowability and powder bed density for CaCO3 contents ranging from 0 to 20 wt.%. Specifically, powders with avalanche angles between 40.1-45.6° formed a uniform powder bed density with a standard deviation within 1%. Thus, a 3D printing specimen (green body) fabricated via BJAM exhibited dimensional accuracy of less than 1% across the entire plane. Additionally, we measured the hydration characteristics of CAC and the changes in compressive strength over 30 days with the addition of CaCO3. The results indicate that the addition of CaCO3 to CAC-based cementitious materials forms multimodal powders that enhance the density of both the powder bed and the green body. Furthermore, CaCO3 promotes the formation of highly crystalline monocarbonate (C4AcH11) and stable hydrate (C3AH6), effectively inhibiting the conversion of CAC and showing compressive strengths of up to 5.2 MPa. These findings suggest a strong potential for expanding the use of BJAM across various applications, including complex casting molds, cores, catalyst supports, and functional architectural interiors.

2.
Nano Converg ; 9(1): 51, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401645

RESUMO

Vanadium-based catalysts have been used for several decades in ammonia-based selective catalytic reduction (NH3-SCR) processes for reducing NOx emissions from various stationary sources (power plants, chemical plants, incinerators, steel mills, etc.) and mobile sources (large ships, automobiles, etc.). Vanadium-based catalysts containing various vanadium species have a high NOx reduction efficiency at temperatures of 350-400 °C, even if the vanadium species are added in small amounts. However, the strengthening of NOx emission regulations has necessitated the development of catalysts with higher NOx reduction efficiencies. Furthermore, there are several different requirements for the catalysts depending on the target industry and application. In general, the composition of SCR catalyst is determined by the components of the fuel and flue gas for a particular application. It is necessary to optimize the catalyst with regard to the reaction temperature, thermal and chemical durability, shape, and other relevant factors. This review comprehensively analyzes the properties that are required for SCR catalysts in different industries and the development strategies of high-performance and low-temperature vanadium-based catalysts. To analyze the recent research trends, the catalysts employed in power plants, incinerators, as well as cement and steel industries, that emit the highest amount of nitrogen oxides, are presented in detail along with their limitations. The recent developments in catalyst composition, structure, dispersion, and side reaction suppression technology to develop a high-efficiency catalyst are also summarized. As the composition of the vanadium-based catalyst depends mostly on the usage in stationary sources, various promoters and supports that improve the catalyst activity and suppress side reactions, along with the studies on the oxidation state of vanadium, are presented. Furthermore, the research trends related to the nano-dispersion of catalytically active materials using various supports, and controlling the side reactions using the structure of shaped catalysts are summarized. The review concludes with a discussion of the development direction and future prospects for high-efficiency SCR catalysts in different industrial fields.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889554

RESUMO

Typically, to meet emission regulations, the selective catalytic reduction of NOX with NH3 (NH3-SCR) technology cause NH3 emissions owing to high NH3/NOX ratios to meet emission regulations. In this study, V-Cu/BN-Ti was used to remove residual NOX and NH3. Catalysts were evaluated for selective catalytic oxidation of NH3 (NH3-SCO) in the NH3-SCR reaction at 200-300 °C. The addition of vanadium and copper increased the number of Brønsted and Lewis acid sites available for the reaction by increasing the ratio of V5+ and forming Cu+ species, respectively. Furthermore, h-BN was dispersed in the catalyst to improve the content of vanadium and copper species on the surface. NH3 and NOX conversion were 98% and 91% at 260 °C, respectively. Consequently, slipped NH3 (NH3-Slip) emitted only 2% of the injected ammonia. Under SO2 conditions, based on the NH3 oxidation reaction, catalytic deactivation was improved by addition of h-BN. This study suggests that h-BN is a potential catalyst that can help remove residual NOX and meet NH3 emission regulations when placed at the bottom of the SCR catalyst layer in coal-fired power plants.

4.
Nanomaterials (Basel) ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070897

RESUMO

In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts' crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C-450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.

5.
RSC Adv ; 10(28): 16700-16708, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498861

RESUMO

Oxygen functionalized carbon nanotubes synthesized by surface acid treatment were used to improve the dispersion properties of active materials for catalysis. Carbon nanotubes have gained attention as a support for active materials due to their high specific surface areas (400-700 m2 g-1) and chemical stability. However, the lack of surface functionality causes poor dispersion of active materials on carbon nanotube supports. In this study, oxygen functional groups were prepared on the surface of carbon nanotubes as anchoring sites for decoration with catalytic nanoparticles. The oxygen functional groups were prepared through a chemical acid treatment using sulfuric acid and nitric acid, and the amount of functional groups was controlled by the reaction time. Vanadium, tungsten, and titanium oxides as catalytic materials were dispersed using an impregnation method on the synthesized carbon nanotube surfaces. Due to the high density of oxygen functional groups, the catalytic nanoparticles were well dispersed and reduced in size on the surface of the carbon nanotube supports. The selective catalytic reduction catalyst with the oxygen functionalized carbon nanotube support exhibited enhanced NO x removal efficiency of over 90% at 350-380 °C which is the general operating temperature range of catalysis in power plants.

6.
Environ Sci Pollut Res Int ; 26(36): 36107-36116, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30835067

RESUMO

This research is conducted to improve the dispersion of MnOx-CeO2 catalyst because manganese is easily aggregated during continuous thermal environment at operating temperature. Aggregated MnOx particles on the support can be a major reason to degrade the catalyst performance. Therefore, the improved dispersion of MnOx particles leads to the enhancement of the catalyst performance by utilizing hexagonal boron nitride (h-BN) which is well known as thermally stable material. Due to the dispersion of MnOx-CeO2 with 5-20 nm particle size, h-BN-supported MnOx-CeO2 catalyst shows the 93% efficiency in NOx removal at 200 °C. The structure and properties of MnOx-CeO2/h-BN catalyst are characterized by X-ray diffraction, Fourier transform infrared spectroscopy spectra, and NH3-temperature programmed desorption. Then, NOx removal efficiency of catalyst is evaluated on a fixed bed reactor and h-BN-supported catalyst, (Mn0.2-Ce0.1)/BN, increases NOx removal efficiency up to 20% at 200 °C in spite of 2/3 reduced content of MnOx-CeO2 compared to no-supported catalyst (Mn0.3-Ce0.15).


Assuntos
Poluentes Atmosféricos/análise , Compostos de Boro/química , Cério/química , Compostos de Manganês/química , Nanopartículas/química , Óxidos de Nitrogênio/análise , Óxidos/química , Poluição do Ar/prevenção & controle , Catálise , Modelos Teóricos , Oxirredução , Temperatura , Difração de Raios X
7.
J Nanosci Nanotechnol ; 15(10): 8217-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726491

RESUMO

Cu-Sn alloy foam is a promising electrode material for Li-ion batteries. In this study, Cu-Sn alloy foam was produced by diffusion-limited electrodeposition in alkaline electrolyte using polyurethane (PU) foam template. Our major concern is to form Cu-Sn alloy foam with nanocrystalline surface morphology by adjusting electrodeposition conditions such as deposition potential and metal ion concentration. Cu-Sn alloy layers comprising of nanoclusters such as nanospheres, nanoellipsoids, and nanoflakes were created depending on electrodeposition conditions. Larger surface area of nanocluster-interconnected Cu-Sn alloy layer was created when both Sn concentration and negative deposition potential were higher. After decomposing PU template thermally, Cu-Sn alloy foam of Cu, Cu6Sn5, and Cu3Sn phases was finally produced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA