Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2402971, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011789

RESUMO

For multicenter-catalyzed reactions, it is important to accurately construct heterogeneous catalysts containing multiple active centers with high activity and low cost, which is more challenging compared to homogeneous catalysts because of the low activity and spatial confinement of active centers in the loaded state. Herein, a convenient protein confinement strategy is reported to locate Pd and Cu single atoms in crowding state on carbon coated alumina for promoting Sonogashira reaction, the most powerful method for constructing the acetylenic moiety in molecules. The single-atomic Pd and Cu centers take advantage in not only the maximized atomic utilization for low cost, but also the much-enhanced performance by facilitating the activation of aryl halides and alkynes. Their locally crowded dispersion brings them closer to each other, which facilitates the transmetallation process of acetylide intermediates between them. Thus, the Sonogashira reaction is drove smoothly by the obtained catalyst with a turnover frequency value of 313 h-1, much more efficiently than that by commercial Pd/C and CuI catalyst, conventional Pd and Cu nanocatalysts, and mixed Pd and Cu single-atom catalyst. The obtained catalyst also exhibits the outstanding durability in the recycling test.

2.
Sci Bull (Beijing) ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38987090

RESUMO

Elastic strain in Cu catalysts enhances their selectivity for the electrochemical CO2 reduction reaction (eCO2RR), particularly toward the formation of multicarbon (C2+) products. However, the reasons for this selectivity and the effect of catalyst precursors have not yet been clarified. Hence, we employed a redox strategy to induce strain on the surface of Cu nanocrystals. Oxidative transformation was employed to convert Cu nanocrystals to CuxO nanocrystals; these were subsequently electrochemically reduced to form Cu catalysts, while maintaining their compressive strain. Using a flow cell configuration, a current density of 1 A/cm2 and Faradaic efficiency exceeding 80% were realized for the C2+ products. The selectivity ratio of C2+/C1 was also remarkable at 9.9, surpassing that observed for the Cu catalyst under tensile strain by approximately 7.6 times. In-situ Raman and infrared spectroscopy revealed a decrease in the coverage of K+ ion-hydrated water (K·H2O) on the compressively strained Cu catalysts, consistent with molecular dynamics simulations and density functional theory calculations. Finite element method simulations confirmed that reducing the coverage of coordinated K·H2O water increased the probability of intermediate reactants interacting with the surface, thereby promoting efficient C-C coupling and enhancing the yield of C2+ products. These findings provide valuable insights into targeted design strategies for Cu catalysts used in the eCO2RR.

3.
Adv Mater ; 36(32): e2402979, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811011

RESUMO

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

4.
Angew Chem Int Ed Engl ; 63(26): e202402841, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647519

RESUMO

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38602509

RESUMO

Unique active sites make single-atom (SA) catalysts promising to overcome obstacles in homogeneous catalysis but challenging due to their fixed coordination environment. Click chemistry is restricted by the low activity of more available Cu(II) catalysts without reducing agents. Herein, we develop efficient, O-coordinated SA Cu(II) directly catalyzed click chemistry. As revealed by theoretical calculations of the superior coordination structure to promote the click reaction, an organic molecule-assisted strategy is applied to prepare the corresponding SA Cu catalysts with respective O and N coordination. Although they both belong to Cu(II) centers, the O-coordinated one exhibits a 5-fold higher activity than the other and even much better activity than traditional homogeneous and heterogeneous Cu(II) catalysts. Control experiments further proved that the O-coordinated SA Cu(II) catalyst tends to be reduced by alkyne into Cu acetylide rather than the N-coordinated catalyst and thus facilitates click chemistry.

6.
Nat Commun ; 15(1): 1010, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307902

RESUMO

The reaction system of hydrogen peroxide (H2O2) catalyzed by nanozyme has a broad prospect in antibacterial treatment. However, the complex catalytic activities of nanozymes lead to multiple pathways reacting in parallel, causing uncertain antibacterial results. New approach to effectively regulate the multiple catalytic activities of nanozyme is in urgent need. Herein, Cu single site is modified on nanoceria with various catalytic activities, such as peroxidase-like activity (POD) and hydroxyl radical antioxidant capacity (HORAC). Benefiting from the interaction between coordinated Cu and CeO2 substrate, POD is enhanced while HORAC is inhibited, which is further confirmed by density functional theory (DFT) calculations. Cu-CeO2 + H2O2 system shows good antibacterial properties both in vitro and in vivo. In this work, the strategy based on the interaction between coordinated metal and carrier provides a general clue for optimizing the complex activities of nanozymes.


Assuntos
Antioxidantes , Oxidantes , Antioxidantes/farmacologia , Cobre , Peróxido de Hidrogênio , Radical Hidroxila , Antibacterianos/farmacologia , Peroxidase
7.
J Am Chem Soc ; 146(4): 2339-2344, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237055

RESUMO

Li-O2 batteries (LOBs) are considered as one of the most promising energy storage devices due to their ultrahigh theoretical energy density, yet they face the critical issues of sluggish cathode redox kinetics during the discharge and charge processes. Here we report a direct synthetic strategy to fabricate a single-atom alloy catalyst in which single-atom Pt is precisely dispersed in ultrathin Pd hexagonal nanoplates (Pt1Pd). The LOB with the Pt1Pd cathode demonstrates an ultralow overpotential of 0.69 V at 0.5 A g-1 and negligible activity loss over 600 h. Density functional theory calculations show that Pt1Pd can promote the activation of the O2/Li2O2 redox couple due to the electron localization caused by the single Pt atom, thereby lowering the energy barriers for the oxygen reduction and oxygen evolution reactions. Our strategy for designing single-atom alloy cathodic catalysts can address the sluggish oxygen redox kinetics in LOBs and other energy storage/conversion devices.

8.
Adv Mater ; 36(14): e2313548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279631

RESUMO

Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.

9.
Proc Natl Acad Sci U S A ; 120(50): e2311149120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064508

RESUMO

Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.

10.
Nano Lett ; 23(17): 8194-8202, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37624651

RESUMO

Optimizing the interatomic distance of dual sites to realize C-C bond breaking of ethanol is critical for the commercialization of direct ethanol fuel cells. Herein, the concept of holding long-range dual sites is proposed to weaken the reaction barrier of C-C cleavage during the ethanol oxidation reaction (EOR). The obtained long-range Rh-O-Pt dual sites achieve a high current density of 7.43 mA/cm2 toward EOR, which is 13.3 times that of Pt/C, as well as remarkable stability. Electrochemical in situ Fourier transform infrared spectroscopy indicates that long-range Rh-O-Pt dual sites can increase the selectivity of C1 products and suppress the generation of a CO intermediate. Theoretical calculations further disclose that redistribution of the surface-localized electron around Rh-O-Pt can promote direct oxidation of -OH, accelerating C-C bond cleavage. This work provides a promising strategy for designing oxygen-bridged long-range dual sites to tune the activity and selectivity of complicated catalytic reactions.

11.
Proc Natl Acad Sci U S A ; 120(32): e2306461120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523530

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one-pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h-1 mgcat-1 (64.47 mg h-1 mgRu-1) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nanoflowers with low-coordinated Ru sites are highly electroactive with an increased d-band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.

12.
Nano Lett ; 23(6): 2312-2320, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36861218

RESUMO

Positively charged Cu sites have been confirmed to significantly promote the production of multicarbon (C2) products from an electrochemical CO2 reduction reaction (CO2RR). However, the positively charged Cu has difficulty in existing under a strong negative bias. In this work, we design a Pdδ--Cu3N catalyst containing charge-separated Pdδ--Cuδ+ atom pair that can stabilize the Cuδ+ sites. In situ characterizations and density functional theory reveal that the first reported negatively charged Pdδ- sites exhibited a superior CO binding capacity together with the adjacent Cuδ+ sites, synergistically promoting the CO dimerization process to produce C2 products. As a result, we achieve a 14-fold increase in the C2 product Faradaic efficiency (FE) on Pdδ--Cu3N, from 5.6% to 78.2%. This work provides a new strategy for synthesizing negative valence atom-pair catalysts and an atomic-level modulation approach of unstable Cuδ+ sites in the CO2RR.

13.
J Am Chem Soc ; 145(13): 7113-7122, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951270

RESUMO

Cobalt-based catalysts have been widely used for Fischer-Tropsch synthesis (FTS) in industry; however, achieving rational catalyst design at the atomic level and thereby a higher activity and more long-chain-hydrocarbon products simultaneously remain an attractive and difficult challenge. The dual-atomic-site catalysts with unique electronic and geometric interface interactions offer a great opportunity for exploiting advanced FTS catalysts with improved performance. Herein, we designed a Ru1Zr1/Co catalyst with Ru and Zr dual atomic sites on the Co nanoparticle (NP) surface through a metal-organic-framework-mediated synthesis strategy which presents greatly enhanced FTS activity (high turnover frequency of 3.8 × 10-2 s-1 at 200 °C) and C5+ selectivity (80.7%). Control experiments presented a synergic effect between Ru and Zr single-atom site on Co NPs. Further density functional theory calculations of the chain growth process from C1 to C5 revealed that the designed Ru/Zr dual sites remarkably lower the rate-limiting barriers due to the significantly weakened C-O bond and promote the chain growth processes, resulting in the greatly boosted FTS performance. Therefore, our work demonstrates the effectiveness of dual-atomic-site design in promoting the FTS performance and provides new opportunities for developing efficient industrial catalysts.

14.
J Am Chem Soc ; 145(17): 9540-9547, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988585

RESUMO

Downsizing metal nanoparticles to single atoms (monoatomization of nanoparticles) has been actively pursued to maximize the metal utilization of noble-metal-based catalysts and regenerate the activity of agglomerated metal catalysts. However, precise control of monoatomization to optimize the catalytic performance remains a great challenge. Herein, we developed a laser ablation strategy to achieve the accurate regulation of Pt nanoparticles (PtNP) to Pt single atoms (Pt1) conversion on CeO2. Owing to the excellent tunability of input laser energy, the proportion of Pt1 versus total Pt on CeO2 can be precisely controlled from 0 to 100% by setting different laser powers and irradiation times. The obtained Pt1PtNP/CeO2 catalyst with approximately 19% Pt1 and 81% PtNP exhibited much-enhanced CO oxidation activity than Pt1/CeO2, PtNP/CeO2, and other Pt1PtNP/CeO2 catalysts. Density functional theory (DFT) calculations showed that PtNP was the major active center for CO oxidation, while Pt1 changed the chemical potential of lattice oxygen on CeO2, which decreased the energy barrier required for CO oxidation by lattice oxygen and resulted in an overall performance improvement. This work provides a reliable strategy to redisperse metal nanoparticles for designing catalysts with various single-atom/nanoparticle ratios from a top-down path and valuable insights into understanding the synergistic effect of nano-single-atom catalysts.

15.
Angew Chem Int Ed Engl ; 62(15): e202219191, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36808803

RESUMO

Herein, we successfully construct bifunctional electrocatalysts by synthesizing atomically dispersed Fe-Se atom pairs supported on N-doped carbon (Fe-Se/NC). The obtained Fe-Se/NC shows a noteworthy bifunctional oxygen catalytic performance with a low potential difference of 0.698 V, far superior to that of reported Fe-based single-atom catalysts. The theoretical calculations reveal that p-d orbital hybridization around the Fe-Se atom pairs leads to remarkably asymmetrical polarized charge distributions. Fe-Se/NC based solid-state rechargeable Zn-air batteries (ZABs-Fe-Se/NC) present stable charge/discharge of 200 h (1090 cycles) at 20 mA cm-2 at 25 °C, which is 6.9 times of ZABs-Pt/C+Ir/C. At extremely low temperature of -40 °C, ZABs-Fe-Se/NC displays an ultra-robust cycling performance of 741 h (4041 cycles) at 1 mA cm-2 , which is about 11.7 times of ZABs-Pt/C+Ir/C. More importantly, ZABs-Fe-Se/NC could be operated for 133 h (725 cycles) even at 5 mA cm-2 at -40 °C.

16.
Angew Chem Int Ed Engl ; 62(5): e202212335, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36380642

RESUMO

Fine-tuning single-atom catalysts (SACs) to surpass their activity limit remains challenging at their atomic scale. Herein, we exploit p-type semiconducting character of SACs having a metal center coordinated to nitrogen donors (MeNx ) and rectify their local charge density by an n-type semiconductor support. With iron phthalocyanine (FePc) as a model SAC, introducing an n-type gallium monosulfide that features a low work function generates a space-charged region across the junction interface, and causes distortion of the FeN4 moiety and spin-state transition in the FeII center. This catalyst shows an over two-fold higher specific oxygen-reduction activity than that of pristine FePc. We further employ three other n-type metal chalcogenides of varying work function as supports, and discover a linear correlation between the activities of the supported FeN4 and the rectification degrees, which clearly indicates that SACs can be continuously tuned by this rectification strategy.

17.
Small ; 19(10): e2206052, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36549675

RESUMO

Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.

18.
J Am Chem Soc ; 144(50): 23223-23229, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36490370

RESUMO

Exploring the transformation/interconversion pathways of catalytic active metal species (single atoms, clusters, nanoparticles) on a support is crucial for the fabrication of high-efficiency catalysts, the investigation of how catalysts are deactivated, and the regeneration of spent catalysts. Sintering and redispersion represent the two main transformation modes for metal active components in heterogeneous catalysts. Herein, we established a novel solid-state atomic replacement transformation for metal catalysts, through which metal atoms exchanged between single atoms and nanoalloys to form a new set of nanoalloys and single atoms. Specifically, we found that the Ni of the PtNi nanoalloy and the Zn of the ZIF-8-derived Zn1 on nitrogen-doped carbon (Zn1-CN) experienced metal interchange to produce PtZn nanocrystals and Ni single atoms (Ni1-CN) at high temperature. The elemental migration and chemical bond evolution during the atomic replacement displayed a Ni and Zn mutual migration feature. Density functional theory calculations revealed that the atomic replacement was realized by endothermically stretching Zn from the CN support into the nanoalloy and exothermically trapping Ni with defects on the CN support. Owing to the synergistic effect of the PtZn nanocrystal and Ni1-CN, the obtained (PtZn)n/Ni1-CN multisite catalyst showed a lower energy barrier of CO2 protonation and CO desorption than that of the reference catalysts in the CO2 reduction reaction (CO2RR), resulting in a much enhanced CO2RR catalytic performance. This unique atomic replacement transformation was also applicable to other metal alloys such as PtPd.

19.
Nano Lett ; 22(23): 9507-9515, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36378069

RESUMO

An Fe-N-C catalyst with an FeN4 active moiety has gained ever-increasing attention for the oxygen reduction reaction (ORR); however, the catalytic performance is sluggish in acidic solutions and the regulation is still a challenge. Herein, Fe-Mo dual-metal sites were constructed to tune the ORR activity of a mononuclear Fe site embedded in porous nitrogen-doped carbon. The cracking of O-O bonds is much more facile on the Fe-Mo atomic pair site due to the preferred bridge-cis adsorption model of oxygen molecules. The downshift of the Fe d band center when an Mo atom is introduced to the FeNx configuration optimizes the absorption-desorption behavior of ORR intermediates in the FeMoN6 active moiety, thus boosting the catalytic performance. The construction of dual-metal atom sites to regulate the catalytically active moiety paves the way for boosting the electrocatalytic performance of other similar non-precious-metal catalysts.

20.
Small Methods ; 6(12): e2201107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287094

RESUMO

Prussian blue analogs (PBAs) with open and porous frameworks have attracted wide attention in alkali metal ion batteries due to their high theoretical specific capacities and fast ion insertion/extraction kinetics. However, abundant coordinated water usually exists in traditional PBAs synthesized in aqueous systems. Consequently, the competition between coordinated water and alkali ions easily causes the rapid structural collapse of PBAs during the repeated discharge/charge cycles, lowering the cycling stability, and rate performance of batteries. Besides, most reported PBAs adopt the cubic/particle-like morphologies with large sizes, which usually suffer from insufficient ion diffusion especially at high rates. Herein, a facile and general strategy for the synthesis of 2D CoCo, CuFe, CuCeFe, and CuCeCo-based PBA nanosheets is reported. As a proof-of-concept application, Co3 [Co(CN)6 ]2 nanosheets are evaluated as anode materials for lithium-ion batteries. Thanks to the lower coordinated water content, smaller impedance and higher lithium-ion diffusion coefficient, Co3 [Co(CN)6 ]2 nanosheets deliver a superior reversible capacity of 810.4 mAh g-1 at 100 mA g-1 , better rate performance, and higher cycling stability compared to common Co3 [Co(CN)6 ]2 cubes. Further studies indicate that the capacitance-controlled electrochemical behaviors dominate in the Co3 [Co(CN)6 ]2 nanosheets, giving rise to their excellent structural stability and superior lithium storage performance even at high rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA