Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Heliyon ; 10(12): e33161, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005924

RESUMO

Poultry necrotic enteritis is an important enteric disease which might be controlled by antibiotics. However, with the excessive use of antibiotics, the phenomenon of drug resistance of Clostridium perfringens is becoming increasingly prominent. Anemoside B4 exhibits important anti-inflammatory, antioxidant and immunomodulatory effects. This study was performed to estimate the effect of Anemoside B4 on chicken necrotic enteritis induced by C. perfringens in vivo and in vitro. In the in vivo experiment we investigated the efficacy of Anemoside B4 on the growth curve, biofilm formation, haemolytic activity, virulence-related gene expression and NF-κB and PI3K/AKT/mTOR activation in Caco-2 cells induced by C. perfringens. The results showed that 12.5-50 µg/mL Anemoside B4 had no antibacterial activity but could inhibit biofilm formation, attenuate haemolytic activity and virulence-related gene expression of C. perfringens and weaken NF-κB and PI3K/Akt/mTOR activation triggered by C. perfringens in Caco-2 cells. In the in vivo experiment, 60 17-day-old healthy White Leghorns were randomly divided into six groups. The growing laying hens of the control group were fed a basic diet, and those of the five challenged groups were fed a basic diet (infection group), added 0.43 g/kg Anemoside B4 (0.43 g/kg Ane group), 0.86 g/kg Anemoside B4 (0.86 g/kg Ane group), 1.72 g/kg Anemoside B4 (1.72 g/kg Ane group) and 40 mg/kg lincomycin (lincomycin group), respectively. All challenged laying hens were infected with 1 × 109 CFU C. perfringens from day 17-20. Blood and intestinal samples were obtained, and the data demonstrated that Anemoside B4 improved the blood biochemical parameters, attenuated jejunum tissue injury, increased the spleen, thymus, bursa of fabricius index, and decreased lesion scores of the jejunum and the ileum. In the jejunum, Anemoside B4 and lincomycin downregulated the expression of IL-1ß, IL-6, IL-10, TNF-α and IFN-γ at mRNA levels. Moreover, Anemoside B4 significantly enhanced both mRNA and protein levels of tight junctions ZO-1, Claudin-1 and MUC-2 in the jejunum. Anemoside B4 weakened p-P65, p-PI3K, p-Akt and p-mTOR protein expression in the jejunum infected by C. perfringens. Diets supplemented with Anemoside B4 alleviated C. perfringens-induced necrotic enteritis in laying hens by inhibiting NF-κB and PI3K/Akt/mTOR signalling pathways and improving intestinal barrier functions.

2.
JCI Insight ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954480

RESUMO

Rheumatoid arthritis (RA) management lean toward achieving remission or low-disease activity. In this study, we conducted single-cell RNA sequencing (scRNAseq) of peripheral blood mononuclear cells (PBMCs) from 36 individuals (18 RA patients and 18 matched controls, accounting for age, sex, race, and ethnicity), to identify disease-relevant cell subsets and cell type-specific signatures associated with disease activity. Our analysis revealed 18 distinct PBMC subsets, including an IFITM3 overexpressing Interferon-activated (IFN-activated) monocyte subset. We observed an increase in CD4+ T effector memory cells in patients with moderate to high disease activity (DAS28-CRP ≥ 3.2), and a decrease in non-classical monocytes in patients with low disease activity or remission (DAS28-CRP < 3.2). Pseudobulk analysis by cell type identified 168 differentially expressed genes between RA and matched controls, with a downregulation of pro-inflammatory genes in the gamma-delta T cells subset, alteration of genes associated with RA predisposition in the IFN-activated subset, and non-classical monocytes. Additionally, we identified a gene signature associated with moderate-high disease activity, characterized by upregulation of pro-inflammatory genes such as TNF, JUN, EGR1, IFIT2, MAFB, G0S2, and downregulation of genes including HLA-DQB1, HLA-DRB5, TNFSF13B. Notably, cell-cell communication analysis revealed an upregulation of signaling pathways, including VISTA, in both moderate-high and remission-low disease activity contexts. Our findings provide valuable insights into the systemic cellular and molecular mechanisms underlying RA disease activity.

3.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39026761

RESUMO

Background: A number of deep learning models have been developed to predict epigenetic features such as chromatin accessibility from DNA sequence. Model evaluations commonly report performance genome-wide; however, cis regulatory elements (CREs), which play critical roles in gene regulation, make up only a small fraction of the genome. Furthermore, cell type specific CREs contain a large proportion of complex disease heritability. Results: We evaluate genomic deep learning models in chromatin accessibility regions with varying degrees of cell type specificity. We assess two modeling directions in the field: general purpose models trained across thousands of outputs (cell types and epigenetic marks), and models tailored to specific tissues and tasks. We find that the accuracy of genomic deep learning models, including two state-of-the-art general purpose models - Enformer and Sei - varies across the genome and is reduced in cell type specific accessible regions. Using accessibility models trained on cell types from specific tissues, we find that increasing model capacity to learn cell type specific regulatory syntax - through single-task learning or high capacity multi-task models - can improve performance in cell type specific accessible regions. We also observe that improving reference sequence predictions does not consistently improve variant effect predictions, indicating that novel strategies are needed to improve performance on variants. Conclusions: Our results provide a new perspective on the performance of genomic deep learning models, showing that performance varies across the genome and is particularly reduced in cell type specific accessible regions. We also identify strategies to maximize performance in cell type specific accessible regions.

4.
Heliyon ; 10(12): e33038, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027442

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the main bacterial cause of diarrhea in weaned piglets. Baicalin-aluminum (BA) complex is the main active ingredient of Scutellaria baicalensis Georgi extracted-aluminum complex, which has been used to treat diarrhea in weaning piglets, however the underlying mechanism remains unclear. To investigate the effects of the BA complex on the regulation of porcine intestinal epithelial (IPEC-1) cells infected with ETEC, IPEC-1 cells were incubated with an ETEC bacterial strain at a multiplicity of infection of 1 for 6 h and then treated with different concentrations of the BA complex for 6 h. ETEC infection increased the levels of cAMP and cGMP, upregulated CFTR (cystic fibrosis transmembrane conductance regulator) mRNA, and downregulated NHE4 mRNA in IPEC-1 cells. Treatment with the BA complex inhibited ETEC adhesion and the production of cAMP and cGMP, reduced CFTR mRNA expression, and increased NHE4 mRNA expression. Overall, the BA complex weakened the adhesion of ETEC to IPEC-1 cells, and inhibited cAMP/cGMP-CFTR signaling in IPEC-1 cells.

5.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948875

RESUMO

Kidney disease is highly heritable; however, the causal genetic variants, the cell types in which these variants function, and the molecular mechanisms underlying kidney disease remain largely unknown. To identify genetic loci affecting kidney function, we performed a GWAS using multiple kidney function biomarkers and identified 462 loci. To begin to investigate how these loci affect kidney function, we generated single-cell chromatin accessibility (scATAC-seq) maps of the human kidney and identified candidate cis-regulatory elements (cCREs) for kidney podocytes, tubule epithelial cells, and kidney endothelial, stromal, and immune cells. Kidney tubule epithelial cCREs explained 58% of kidney function SNP-heritability and kidney podocyte cCREs explained an additional 6.5% of SNP-heritability. In contrast, little kidney function heritability was explained by kidney endothelial, stromal, or immune cell-specific cCREs. Through functionally informed fine-mapping, we identified putative causal kidney function variants and their corresponding cCREs. Using kidney scATAC-seq data, we created a deep learning model (which we named ChromKid) to predict kidney cell type-specific chromatin accessibility from sequence. ChromKid and allele specific kidney scATAC-seq revealed that many fine-mapped kidney function variants locally change chromatin accessibility in tubule epithelial cells. Enhancer assays confirmed that fine-mapped kidney function variants alter tubule epithelial regulatory element function. To map the genes which these regulatory elements control, we used CRISPR interference (CRISPRi) to target these regulatory elements in tubule epithelial cells and assessed changes in gene expression. CRISPRi of enhancers harboring kidney function variants regulated NDRG1 and RBPMS expression. Thus, inherited differences in tubule epithelial NDRG1 and RBPMS expression may predispose to kidney disease in humans. We conclude that genetic variants affecting tubule epithelial regulatory element function account for most SNP-heritability of human kidney function. This work provides an experimental approach to identify the variants, regulatory elements, and genes involved in polygenic disease.

6.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889277

RESUMO

MOTIVATION: Deep graph learning (DGL) has been widely employed in the realm of ligand-based virtual screening. Within this field, a key hurdle is the existence of activity cliffs (ACs), where minor chemical alterations can lead to significant changes in bioactivity. In response, several DGL models have been developed to enhance ligand bioactivity prediction in the presence of ACs. Yet, there remains a largely unexplored opportunity within ACs for optimizing ligand bioactivity, making it an area ripe for further investigation. RESULTS: We present a novel approach to simultaneously predict and optimize ligand bioactivities through DGL and ACs (OLB-AC). OLB-AC possesses the capability to optimize ligand molecules located near ACs, providing a direct reference for optimizing ligand bioactivities with the matching of original ligands. To accomplish this, a novel attentive graph reconstruction neural network and ligand optimization scheme are proposed. Attentive graph reconstruction neural network reconstructs original ligands and optimizes them through adversarial representations derived from their bioactivity prediction process. Experimental results on nine drug targets reveal that out of the 667 molecules generated through OLB-AC optimization on datasets comprising 974 low-activity, noninhibitor, or highly toxic ligands, 49 are recognized as known highly active, inhibitor, or nontoxic ligands beyond the datasets' scope. The 27 out of 49 matched molecular pairs generated by OLB-AC reveal novel transformations not present in their training sets. The adversarial representations employed for ligand optimization originate from the gradients of bioactivity predictions. Therefore, we also assess OLB-AC's prediction accuracy across 33 different bioactivity datasets. Results show that OLB-AC achieves the best Pearson correlation coefficient (r2) on 27/33 datasets, with an average improvement of 7.2%-22.9% against the state-of-the-art bioactivity prediction methods. AVAILABILITY AND IMPLEMENTATION: The code and dataset developed in this work are available at github.com/Yueming-Yin/OLB-AC.


Assuntos
Aprendizado Profundo , Ligantes , Redes Neurais de Computação , Descoberta de Drogas/métodos
7.
Foods ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38890945

RESUMO

A fundamental regulatory framework to elucidate the role of electrical stimulation (ES) in reducing long production cycles, enhancing protein utilization, and boosting product quality of dry-cured ham is essential. However, how mitochondria and enzymes in meat fibers are altered by ES during post-processing, curing, and fermentation procedures remains elusive. This study sought to explore the impact of ES on the regulation of heat shock proteins (HSP27, HSP70), apoptotic pathways, and subsequent influences on dry-cured pork loin quality. The gathered data validated the hypothesis that ES notably escalates mitochondrial oxidative stress and accelerates mitochondrial degradation along the ripening process. The proapoptotic response in ES-treated samples was increased by 120.7%, with a cellular apoptosis rate 5-fold higher than that in control samples. This mitochondrial degradation is marked by increased ratios of Bax/Bcl-2 protein along the time course, indicating that apoptosis could contribute to the dry-cured ham processing. ES was shown to further down-regulate HSP27 and HSP70, establishing a direct correlation with the activation of mitochondrial apoptosis pathways, accompanied by dry-cured ham quality improvements. The findings show that ES plays a crucial role in facilitating the ripening of dry-cured ham by inducing mitochondrial apoptosis to reduce HSP expression. This knowledge not only explains the fundamental mechanisms behind myofibril degradation in dry-cured ham production but also offers a promising approach to enhance quality and consistency.

8.
J Clin Anesth ; 96: 111493, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38723416

RESUMO

STUDY OBJECTIVE: The use of hydroxyethyl starch 130/0.4 has been linked to renal injury in critically ill patients, but its impact on surgical patients remains uncertain. DESIGN: A retrospective cohort study. SETTING: This study was conducted at one tertiary care hospital in China. PATIENTS: We evaluated the records of 51,926 Chinese adults who underwent noncardiac surgery from 2013 to 2022. Patients given a combination of hydroxyethyl starch 130/0.4 and crystalloids were propensity-matched at a 1: 1 ratio of baseline characteristics to patients given only crystalloids (11,725 pairs). INTERVENTIONS: Eligible patients were divided into those given a combination of hydroxyethyl starch 130/0.4 and crystalloid during surgery and a reference crystalloid group consisting of patients who were not given any colloid. MEASUREMENTS: The primary outcome was the incidence of acute kidney injury. Secondarily, acute kidney injury stage, need for renal replacement therapy, intensive care unit transfer rate, and duration of postoperative hospitalization were considered. MAIN RESULTS: After matching, hydroxyethyl starch use [8.5 (IQR: 7.5-10.0) mL/kg] did not increase the incidence of acute kidney injury compared with that in the crystalloid group [2.0 vs. 2.2%, OR: 0.90 (0.74-1.08), P = 0.25]. Nor did hydroxyethyl starch use worsen acute kidney injury stage [OR 0.90 (0.75-1.08), P = 0.26]. No significant differences between the fluid groups were observed in renal replacement therapy [OR 0.60 (0.41-0.90), P = 0.02)] or intensive care unit transfers [OR 1.02 (0.95-1.09), P = 0.53] after Bonferroni correction. Even in a subset of patients at high risk of renal injury, hydroxyethyl starch use was not associated with worse outcomes. CONCLUSIONS: Hydroxyethyl starch 130/0.4 use was not significantly associated with a greater incidence of postoperative acute kidney injury compared to receiving crystalloid solutions only.


Assuntos
Injúria Renal Aguda , Soluções Cristaloides , Derivados de Hidroxietil Amido , Complicações Pós-Operatórias , Pontuação de Propensão , Humanos , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/induzido quimicamente , Derivados de Hidroxietil Amido/efeitos adversos , Derivados de Hidroxietil Amido/administração & dosagem , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Soluções Cristaloides/administração & dosagem , Soluções Cristaloides/efeitos adversos , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Incidência , Substitutos do Plasma/efeitos adversos , Substitutos do Plasma/administração & dosagem , Adulto , Terapia de Substituição Renal/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Procedimentos Cirúrgicos Operatórios/efeitos adversos
9.
JCI Insight ; 9(12)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743491

RESUMO

Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.


Assuntos
Dermatomiosite , Análise de Célula Única , Humanos , Dermatomiosite/imunologia , Dermatomiosite/genética , Dermatomiosite/sangue , Análise de Célula Única/métodos , Criança , Genômica/métodos , Masculino , Feminino , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Adolescente , Pré-Escolar , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Imunofenotipagem
10.
Biomed Mater ; 19(4)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38815612

RESUMO

Magnesium (Mg) has gained widespread recognition as a potential revolutionary orthopedic biomaterial. However, whether the biodegradation of the Mg-based orthopedic implants would pose a risk to patients with chronic kidney disease (CKD) remains undetermined as the kidney is a key organ regulating mineral homeostasis. A rat CKD model was established by a 5/6 subtotal nephrectomy approach, followed by intramedullary implantation of three types of pins: stainless steel, high pure Mg with high corrosion resistance, and the Mg-Sr-Zn alloy with a fast degradation rate. The long-term biosafety of the biodegradable Mg or its alloys as orthopedic implants were systematically evaluated. During an experimental period of 12 weeks, the implantation did not result in a substantial rise of Mg ion concentration in serum or major organs such as hearts, livers, spleens, lungs, or kidneys. No pathological changes were observed in organs using various histological techniques. No significantly increased iNOS-positive cells or apoptotic cells in these organs were identified. The biodegradable Mg or its alloys as orthopedic implants did not pose an extra health risk to CKD rats at long-term follow-up, suggesting that these biodegradable orthopedic devices might be suitable for most target populations, including patients with CKD.


Assuntos
Implantes Absorvíveis , Ligas , Magnésio , Insuficiência Renal Crônica , Animais , Magnésio/química , Ligas/química , Ratos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Masculino , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Teste de Materiais , Rim/metabolismo , Rim/patologia , Aço Inoxidável/química , Corrosão
11.
Nat Genet ; 56(6): 1156-1167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811842

RESUMO

Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.


Assuntos
Antígenos CD28 , Antígeno CTLA-4 , Cromatina , Regulação da Expressão Gênica , Humanos , Antígeno CTLA-4/genética , Antígenos CD28/genética , Cromatina/genética , Cromatina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Sistemas CRISPR-Cas
12.
ACS Appl Mater Interfaces ; 16(19): 25013-25024, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709947

RESUMO

The magnetic alignment of molecules, which exploits the anisotropy of diamagnetic susceptibility, provides a clean and versatile approach to the structural manipulation of semiconducting polymers. Here, the magnetic-alignment dynamics of two molecular-weight (MW) batches of a diketopyrrolopyrrole (DPP)-based copolymer (PDVT-8) were investigated. Microstructural characterizations revealed that the magnetically aligned, high-MW (Mn = 53.7 kDa) PDVT-8 film exhibited a higher degree of backbone chain alignment and film crystallinity compared with the low-MW (Mn = 17.6 kDa) PDVT-8 film grown via the same magnetic alignment method. We found that as the MW increases, the degree of preaggregation of the polymer molecules in solution significantly increases and the aggregation mode changes from H-aggregation to J-aggregation through a cooperative assembly mechanism. These events improved the responsiveness of high-MW polymer molecules to magnetic fields. Field-effect transistors based on the magnetic aligned high-MW PDVT-8 films exhibited a 6.8-fold increase in hole mobility compared to the spin-coated films, along with a mobility anisotropy ratio of 12.6. This work establishes a significant correlation among chain aggregation behavior in solution, polymer film microstructures, magnetic responsiveness, and carrier transport performance in donor-acceptor polymer systems.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38819328

RESUMO

OBJECTIVE: Robotic surgery is being increasingly used for colorectal cancer surgery. However, its utility versus laparoscopic surgery in older patients is unclear. We systematically examined evidence to assess the differences in short-term outcomes of robotic versus laparoscopic surgery for colorectal cancer in older patients. MATERIAL AND METHODS: Comparative studies published on PubMed, Web of Science, Embase, and CENTRAL databases were searched up to August 30th, 2023. RESULTS: Seven studies totaling 14,043 patients were included. Meta-analysis showed no difference in the operation time between the robotic and laparoscopic groups. Meta-analysis of ClavienDindo complications showed no difference between the robotic and laparoscopic groups for grades I and II or grades III and IV complications. Similarly, conversion to open surgery, reoperation rates and length of hospital stay were not significantly different between the two groups. Readmission rates and mortality rates were significantly lower with robotic surgery. CONCLUSION: This first meta-analysis comparing outcomes of robotic and laparoscopic surgery in older colorectal cancer patients shows that both approaches result in no difference in operating time, complication rates, conversion to open surgery, reoperation rates, and LOS. Scarce data shows that mortality and readmission rates may be lower with robotic surgery.

15.
Genome Biol ; 25(1): 94, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622708

RESUMO

Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.


Assuntos
Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
16.
Blood Adv ; 8(13): 3562-3575, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38574299

RESUMO

ABSTRACT: Multiple myeloma is characterized by frequent clinical relapses after conventional therapy. Recently, chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA) has been established as a treatment option for patients with relapsed or refractory disease. However, although >70% of patients initially respond to this treatment, clinical relapse and disease progression occur in most cases. Recent studies showed persistent expression of BCMA at the time of relapse, indicating that immune-intrinsic mechanisms may contribute to this resistance. Although there were no preexisting T-cell features associated with clinical outcomes, we found that patients with a durable response to CAR T-cell treatment had greater persistence of their CAR T cells than patients with transient clinical responses. They also possessed a significantly higher proportion of CD8+ T-effector memory cells. In contrast, patients with short-lived responses to treatment have increased frequencies of cytotoxic CD4+ CAR T cells. These cells expand in vivo early after infusion but express exhaustion markers (hepatitis A virus cellular receptor 2 [HAVCR2] and T-cell immunoglobulin and mucin domain-containing-3 [TIGIT]) and remain polyclonal. Finally, we demonstrate that nonclassical monocytes are enriched in the myeloma niche and may induce CAR T-cell dysfunction through mechanisms that include transforming growth factor ß. These findings shed new light on the role of cytotoxic CD4+ T cells in disease progression after CAR T-cell therapy.


Assuntos
Antígeno de Maturação de Linfócitos B , Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Recidiva , Masculino , Feminino , Exaustão das Células T
17.
BMC Vet Res ; 20(1): 141, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582846

RESUMO

Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.


Assuntos
Infecções por Haemophilus , Haemophilus parasuis , Doenças dos Suínos , Animais , Antígeno B7-H1 , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Terapia de Imunossupressão/veterinária , Fosfatidilinositol 3-Quinases , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Suínos , Doenças dos Suínos/microbiologia , Serina-Treonina Quinases TOR
19.
Toxicon ; 243: 107709, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38615996

RESUMO

Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , PPAR gama , Quercetina , Tricotecenos , Quercetina/farmacologia , Animais , Tricotecenos/toxicidade , Suínos , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
20.
Front Oncol ; 14: 1380821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590654

RESUMO

Introduction: Cluster of differentiation (CD) 44 is a non-kinase cell surface transmembrane glycoprotein critical for tumor maintenance and progression. Methods: We conducted a systematic analysis of the expression profile and genomic alteration profile of CD44 in 33 types of cancer. The immune characteristics of CD44 were comprehensively explored by TIMER2.0 and CIBERSORT. In addition, the CD44 transcriptional landscape was examined at the single-cell level. Then, Pseudotime trajectory analysis of CD44 gene expression was performed using Monocle 2, and CellChat was utilized to compare the crosstalk differences between CD44+monocytes and CD44- monocytes. Tumor immune dysfunction and exclusion (TIDE) was used to evaluate the predictive ability of CD44 for immune checkpoint blockade (ICB) responses. The effects of CD44 on colorectal cancer (CRC) and macrophage polarization were investigated by knocking down the expression of CD44 in HCT-116 cell and macrophages in vitro. Results: The expression of CD44 elevated in most cancers, predicting unfavorable prognosis. In addditon, CD44 was correlation with immune cell infiltration and key immune regulators. CD44+ monocytes had a higher information flow intensity than CD44- monocytes. CD44 had good predictive ability for immune checkpoint blockade responses. Knockdown of CD44 inhibited the proliferation, migration, and invasion of HCT-116 cell in vitro. Knockdown of CD44 inhibited M2 macrophage polarization. Discussion: These findings suggest that CD44 is involved in regulating tumor development, macrophage polarization, and has certain predictive value for patient clinical prognosis and response to immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA