Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 191: 106409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218457

RESUMO

Interictal epileptiform discharges (IEDs) often co-occur across spatially-separated cortical regions, forming IED networks. However, the factors prompting IED propagation remain unelucidated. We hypothesized that slow oscillations (SOs) might facilitate IED propagation. Here, the amplitude and phase synchronization of SOs preceding propagating and non-propagating IEDs were compared in 22 patients with focal epilepsy undergoing intracranial electroencephalography (EEG) evaluation. Intracranial channels were categorized into the irritative zone (IZ) and normal zone (NOZ) regarding the presence of IEDs. During wakefulness, we found that pre-IED SOs within the IZ exhibited higher amplitudes for propagating IEDs than non-propagating IEDs (delta band: p = 0.001, theta band: p < 0.001). This increase in SOs was also concurrently observed in the NOZ (delta band: p = 0.04). Similarly, the inter-channel phase synchronization of SOs prior to propagating IEDs was higher than those preceding non-propagating IEDs in the IZ (delta band: p = 0.04). Through sliding window analysis, we observed that SOs preceding propagating IEDs progressively increased in amplitude and phase synchronization, while those preceding non-propagating IEDs remained relatively stable. Significant differences in amplitude occurred approximately 1150 ms before IEDs. During non-rapid eye movement (NREM) sleep, SOs on scalp recordings also showed higher amplitudes before intracranial propagating IEDs than before non-propagating IEDs (delta band: p = 0.006). Furthermore, the analysis of IED density around sleep SOs revealed that only high-amplitude sleep SOs demonstrated correlation with IED propagation. Overall, our study highlights that transient but widely distributed SOs are associated with IED propagation as well as generation in focal epilepsy during sleep and wakefulness, providing new insight into the EEG substrate supporting IED networks.


Assuntos
Eletroencefalografia , Epilepsias Parciais , Humanos , Sono , Eletrocorticografia , Vigília
2.
Neurosci Bull ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999861

RESUMO

High-frequency oscillations (HFOs) encompass ripples (80 Hz-200 Hz) and fast ripples (200 Hz-600 Hz), serving as a promising biomarker for localizing the epileptogenic zone in epilepsy. Spontaneous fast ripples are always pathological, while ripples may be physiological or pathological. Distinguishing physiological from pathological ripples is important not only for designating epileptogenic brain regions, but also for investigations that study ripples in the context of memory encoding, consolidation, and recall in patients with epilepsy. Many studies have sought to identify distinguishing features between pathological and physiological ripples over the past two decades. Physiological and pathological ripples differ with respect to their spatial location, cellular mechanisms, morphology, and coupling with background electroencephalographic activity. Retrospective studies have demonstrated that differentiating between pathological and physiological ripples can improve surgical outcome prediction. In this review, we summarize the characteristics, differences, and applications of pathological and physiological HFOs and discuss strategies for their clinical translation.

3.
Clin Neurophysiol ; 151: 107-115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245497

RESUMO

OBJECTIVE: We explored whether quantifiable differences between clinical seizures (CSs) and subclinical seizures (SCSs) occur in the pre-ictal state. METHODS: We analyzed pre-ictal stereo-electroencephalography (SEEG) retrospectively across mesial temporal lobe epilepsy patients with recorded CSs and SCSs. Power spectral density and functional connectivity (FC) were quantified within and between the seizure onset zone (SOZ) and the early propagation zone (PZ), respectively. To evaluate the fluctuation of neural connectivity, FC variability was computed. Measures were further verified by a logistic regression model to evaluate their classification potentiality through the area under the receiver-operating-characteristics curve (AUC). RESULTS: Fifty-four pre-ictal SEEG epochs (27 CSs and 27 SCSs) were selected among 14 patients. Within the SOZ, pre-ictal FC variability of CSs was larger than SCSs in 1-45 Hz during 30 seconds before seizure onset. Pre-ictal FC variability between the SOZ and PZ was larger in SCSs than CSs in 55-80 Hz within 1 minute before onset. Using these two variables, the logistic regression model achieved an AUC of 0.79 when classifying CSs and SCSs. CONCLUSIONS: Pre-ictal FC variability within/between epileptic zones, not signal power or FC value, distinguished SCSs from CSs. SIGNIFICANCE: Pre-ictal epileptic network stability possibly marks seizure phenotypes, contributing insights into ictogenesis and potentially helping seizure prediction.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Estudos Retrospectivos , Convulsões/diagnóstico , Eletroencefalografia
4.
Epilepsia ; 64(4): 973-985, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36695000

RESUMO

OBJECTIVE: Sleep strongly activates interictal epileptic activity through an unclear mechanism. We investigated how scalp sleep slow waves (SSWs), whose positive and negative half-waves reflect the fluctuation of neuronal excitability between the up and down states, respectively, modulate interictal epileptic events in focal epilepsy. METHODS: Simultaneous polysomnography was performed in 45 patients with drug-resistant focal epilepsy during intracranial electroencephalographic recording. Scalp SSWs and intracranial spikes and ripples (80-250 Hz) were detected; ripples were classified as type I (co-occurring with spikes) or type II (occurring alone). The Hilbert transform was used to analyze the distributions of spikes and ripples in the phases of SSWs. RESULTS: Thirty patients with discrete seizure-onset zone (SOZ) and discernable sleep architecture were included. Intracranial spikes and ripples accumulated around the negative peaks of SSWs and increased with SSW amplitude. Phase analysis revealed that spikes and both ripple subtypes in SOZ were similarly facilitated by SSWs exclusively during down state. In exclusively irritative zones outside SOZ (EIZ), SSWs facilitated spikes and type I ripples across a wider range of phases and to a greater extent than those in SOZ. The type II and type I ripples in EIZ were modulated by SSWs in different patterns. Ripples in normal zones decreased specifically during the up-to-down transition and then increased after the negative peak of SSW, with a characteristically high post-/pre-negative peak ratio. SIGNIFICANCE: SSWs modulate interictal events in an amplitude-dependent and region-specific pattern. Pathological ripples and spikes were facilitated predominantly during the cortical down state. Coupling analysis of SSWs could improve the discrimination of pathological and physiological ripples and facilitate seizure localization.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Eletroencefalografia , Epilepsia/patologia , Epilepsias Parciais/diagnóstico , Convulsões/patologia , Sono/fisiologia , Epilepsia Resistente a Medicamentos/diagnóstico
5.
Front Oncol ; 10: 570656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392072

RESUMO

Overexpression of DGUOK promotes mitochondria oxidative phosphorylation and lung adenocarcinoma progression. However, the role and mechanism of DGUOK in regulation of mitochondria function and lung cancer progression still poorly understood. Here we demonstrated that DGUOK regulated NAD+ biogenesis. Depletion of the DGUOK significantly decreased NAD+ level. Furthermore, knockout of the DGUOK considerably reduced expression of the NMNAT2, a key molecule controlling NAD+ synthesis, at both mRNA and protein levels. Ectopic expression of the NMNAT2 abrogated the effect of knockdown of DGUOK on NAD+. Notably, this regulation is independent of DGUOK -mediated mitochondria complex I activity. We also showed that NMNAT2 was highly expressed in lung adenocarcinoma and negatively correlated with the patient overall survival. Our study suggested that DGUOK regulates NAD+ in a NMNAT2 dependent manner and DGUOK-NMNAT2-NAD+ axis could be a potential therapeutic target in lung adenocarcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA