Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38211316

RESUMO

Objective.Computed tomography (CT) is widely used in medical research and clinical diagnosis. However, acquiring CT data requires patients to be exposed to considerable ionizing radiance, leading to physical harm. Recent studies have considered using neural radiance field (NERF) techniques to infer the full-view CT projections from single-view x-ray projection, thus aiding physician judgment and reducing Radiance hazards. This paper enhances this technique in two directions: (1) accurate generalization capabilities for control models. (2) Consider different ranges of viewpoints.Approach.Building upon generative radiance fields (GRAF), we propose a method called ACnerf to enhance the generalization of the NERF through alignment and pose correction. ACnerf aligns with a reference single x-ray by utilizing a combination of positional encoding with Gaussian random noise (latent code) obtained from GRAF training. This approach avoids compromising the 3D structure caused by altering the generator. During inference, a pose judgment network is employed to correct the pose and optimize the rendered viewpoint. Additionally, when generating a narrow range of views, ACnerf employs frequency-domain regularization to fine-tune the generator and achieve precise projections.Main results.The proposed ACnerf method surpasses the state-of-the-art NERF technique in terms of rendering quality for knee and chest data with varying contrasts. It achieved an average improvement of 2.496 dB in PSNR and 41% in LPIPS for 0°-360° projections. Additionally, for -15° to 15° projections, ACnerf achieved an average improvement of 0.691 dB in PSNR and 25.8% in LPIPS.Significance.With adjustments in alignment, inference, and rendering range, our experiments and evaluations on knee and chest data of different contrasts show that ACnerf effectively reduces artifacts and aberrations in the new view. ACnerf's ability to recover more accurate 3D structures from single x-rays has excellent potential for reducing damage from ionising radiation in clinical diagnostics.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Humanos , Raios X , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
Vis Comput ; : 1-13, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35540957

RESUMO

Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model's effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA