Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 1187, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864031

RESUMO

Ferroptosis is mediated by lipid peroxidation of phospholipids containing polyunsaturated fatty acyl moieties. Glutathione, the key cellular antioxidant capable of inhibiting lipid peroxidation via the activity of the enzyme glutathione peroxidase 4 (GPX-4), is generated directly from the sulfur-containing amino acid cysteine, and indirectly from methionine via the transsulfuration pathway. Herein we show that cysteine and methionine deprivation (CMD) can synergize with the GPX4 inhibitor RSL3 to increase ferroptotic cell death and lipid peroxidation in both murine and human glioma cell lines and in ex vivo organotypic slice cultures. We also show that a cysteine-depleted, methionine-restricted diet can improve therapeutic response to RSL3 and prolong survival in a syngeneic orthotopic murine glioma model. Finally, this CMD diet leads to profound in vivo metabolomic, proteomic and lipidomic alterations, highlighting the potential for improving the efficacy of ferroptotic therapies in glioma treatment with a non-invasive dietary modification.


Assuntos
Ferroptose , Glioma , Humanos , Animais , Camundongos , Metionina , Cisteína , Proteômica , Racemetionina , Glioma/tratamento farmacológico
2.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865302

RESUMO

Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.

3.
Oncotarget ; 11(4): 443-451, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32064048

RESUMO

There is a compelling need for new therapeutic strategies for glioblastoma multiforme (GBM). Preclinical target and therapeutic discovery for GBMs is primarily conducted using cell lines grown in serum-containing media, such as U-87 MG, which do not reflect the gene expression profiles of tumors found in GBM patients. To address this lack of representative models, we sought to develop a panel of patient-derived GBM models and characterize their genomic features, using RNA sequencing (RNA-seq) and growth characteristics, both when grown as neurospheres in culture, and grown orthotopically as xenografts in mice. When we compared these with commonly used GBM cell lines in the Cancer Cell Line Encyclopedia (CCLE), we found these patient-derived models to have greater diversity in gene expression and to better correspond to GBMs directly sequenced from patient tumor samples. We also evaluated the potential of these models for targeted therapy, by using the genomic characterization to identify small molecules that inhibit the growth of distinct subsets of GBMs, paving the way for precision medicines for GBM.

4.
ACS Chem Biol ; 15(2): 469-484, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31899616

RESUMO

Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death. Moreover, we found that small molecules activating ferroptosis through system xc- inhibition or GPX4 inhibition synergize with radiation to induce ferroptosis in several cancer types by enhancing cytoplasmic lipid peroxidation but not increasing DNA damage or caspase activation. Ferroptosis inducers synergized with cytoplasmic irradiation, but not nuclear irradiation. Finally, administration of ferroptosis inducers enhanced the antitumor effect of radiation in a murine xenograft model and in human patient-derived models of lung adenocarcinoma and glioma. These results suggest that ferroptosis inducers may be effective radiosensitizers that can expand the efficacy and range of indications for radiation therapy.


Assuntos
Antineoplásicos/uso terapêutico , Ferroptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Carbolinas/uso terapêutico , Linhagem Celular Tumoral , Raios gama , Humanos , Imidazóis/uso terapêutico , Cetonas/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos Nus , Piperazinas/uso terapêutico , Sorafenibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Chem Biol ; 14(5): 507-515, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610484

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death caused by the failure of the glutathione-dependent lipid-peroxide-scavenging network. FINO2 is an endoperoxide-containing 1,2-dioxolane that can initiate ferroptosis selectively in engineered cancer cells. We investigated the mechanism and structural features necessary for ferroptosis initiation by FINO2. We found that FINO2 requires both an endoperoxide moiety and a nearby hydroxyl head group to initiate ferroptosis. In contrast to previously described ferroptosis inducers, FINO2 does not inhibit system xc- or directly target the reducing enzyme GPX4, as do erastin and RSL3, respectively, nor does it deplete GPX4 protein, as does FIN56. Instead, FINO2 both indirectly inhibits GPX4 enzymatic function and directly oxidizes iron, ultimately causing widespread lipid peroxidation. These findings suggest that endoperoxides such as FINO2 can initiate a multipronged mechanism of ferroptosis.


Assuntos
Apoptose , Glutationa Peroxidase/fisiologia , Ferro/química , Animais , Carbolinas/química , Linhagem Celular Tumoral , Colorimetria , Dioxolanos/química , Retículo Endoplasmático/metabolismo , Glutationa/química , Glutationa Peroxidase/química , Homeostase , Humanos , Peroxidação de Lipídeos , Camundongos , Microssomos/metabolismo , NADP/química , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Piperazinas/química , Engenharia de Proteínas , Relação Estrutura-Atividade
6.
Cell ; 171(3): 501-502, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053966

RESUMO

In this issue of Cell, Wenzel et al. solve a long-standing mystery regarding how damage to cell membranes occurs during ferroptosis, an iron-dependent form of regulated cell death. They found that lipoxygenases are like Transformer toys, being converted from one enzyme type to another in the presence of the protein PEBP1.


Assuntos
Lipoxigenase , Lipoxigenases , Apoptose , Morte Celular , Lipídeos
7.
Nat Struct Mol Biol ; 21(10): 893-900, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25195049

RESUMO

Homologous recombination is a conserved pathway for repairing double-stranded breaks, which are processed to yield single-stranded DNA overhangs that serve as platforms for presynaptic-complex assembly. Here we use single-molecule imaging to reveal the interplay between Saccharomyces cerevisiae RPA, Rad52 and Rad51 during presynaptic-complex assembly. We show that Rad52 binds RPA-ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52-RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Our work illustrates the spatial and temporal progression of the association of RPA and Rad52 with the presynaptic complex and reveals a new RPA-Rad52-Rad51-ssDNA intermediate, with implications for how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages of recombination.


Assuntos
DNA de Cadeia Simples/metabolismo , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação/genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Ligação Proteica/genética , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Methods Cell Biol ; 123: 217-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974030

RESUMO

Interactions between proteins and nucleic acids are at the molecular foundations of most key biological processes, including DNA replication, genome maintenance, the regulation of gene expression, and chromosome segregation. A complete understanding of these types of biological processes requires tackling questions with a range of different techniques, such as genetics, cell biology, molecular biology, biochemistry, and structural biology. Here, we describe a novel experimental approach called "DNA curtains" that can be used to complement and extend these more traditional techniques by providing real-time information about protein-nucleic acid interactions at the level of single molecules. We describe general features of the DNA curtain technology and its application to the study of protein-nucleic acid interactions in vitro. We also discuss some future developments that will help address crucial challenges to the field of single-molecule biology.


Assuntos
Proteínas de Ligação a DNA/química , Ácidos Nucleicos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Difusão , Ensaios Enzimáticos , Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Ligação Proteica
9.
PLoS One ; 9(2): e87922, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498402

RESUMO

Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein necessary for all aspects of DNA metabolism involving an ssDNA intermediate, including DNA replication, repair, recombination, DNA damage response and checkpoint activation, and telomere maintenance. The role of RPA in most of these reactions is to protect the ssDNA until it can be delivered to downstream enzymes. Therefore a crucial feature of RPA is that it must bind very tightly to ssDNA, but must also be easily displaced from ssDNA to allow other proteins to gain access to the substrate. Here we use total internal reflection fluorescence microscopy and nanofabricated DNA curtains to visualize the behavior of Saccharomyces cerevisiae RPA on individual strands of ssDNA in real-time. Our results show that RPA remains bound to ssDNA for long periods of time when free protein is absent from solution. In contrast, RPA rapidly dissociates from ssDNA when free RPA is present in solution allowing rapid exchange between the free and bound states. In addition, the S. cerevisiae DNA recombinase Rad51 and E. coli single-stranded binding protein (SSB) also promote removal of RPA from ssDNA. These results reveal an unanticipated exchange between bound and free RPA suggesting a binding mechanism that can confer exceptionally slow off rates, yet also enables rapid displacement through a direct exchange mechanism that is reliant upon the presence of free ssDNA-binding proteins in solution. Our results indicate that RPA undergoes constant microscopic dissociation under all conditions, but this is only manifested as macroscopic dissociation (i.e. exchange) when free proteins are present in solution, and this effect is due to mass action. We propose that the dissociation of RPA from ssDNA involves a partially dissociated intermediate, which exposes a small section of ssDNA allowing other proteins to access to the DNA.


Assuntos
Replicação do DNA , DNA de Cadeia Simples/genética , Escherichia coli/genética , Proteína de Replicação A/metabolismo , Trifosfato de Adenosina/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligação Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinação Genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA