Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 63(8): 1555-1567, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34110093

RESUMO

Among the five members of AUX1/LAX genes coding for auxin carriers in rice, only OsAUX1 and OsAUX3 have been reported. To understand the function of the other AUX1/LAX genes, two independent alleles of osaux4 mutants, osaux4-1 and osaux4-2, were constructed using the CRISPR/Cas9 editing system. Homozygous osaux4-1 or osaux4-2 exhibited shorter primary root (PR) and longer root hair (RH) compared to the wild-type Dongjin (WT/DJ), and lost response to indoleacetic acid (IAA) treatment. OsAUX4 is intensively expressed in roots and localized on the plasma membrane, suggesting that OsAUX4 might function in the regulation of root development. The decreased meristem cell division activity and the downregulated expression of cell cycle genes in root apices of osaux4 mutants supported the hypothesis that OsAUX4 positively regulates PR elongation. OsAUX4 is expressed in RH, and osaux4 mutants showing longer RH compared to WT/DJ implies that OsAUX4 negatively regulates RH development. Furthermore, osaux4 mutants are insensitive to Pi starvation (-Pi) and OsAUX4 effects on the -Pi response is associated with altered expression levels of Pi starvation-regulated genes, and auxin distribution/contents. This study revealed that OsAUX4 not only regulates PR and RH development but also plays a regulatory role in crosstalk between auxin and -Pi signaling.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fosfatos/deficiência , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Meristema/citologia , Mutação/genética , Oryza/genética , Raízes de Plantas/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
2.
J Food Sci ; 84(5): 1224-1230, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30990886

RESUMO

Glycyrrhiza uralensis is the major plant source of licorice. This study was to identify bioactive compounds from the plant's leaves in order to make better use of its aerial part. An ethanol extract of the leaves was subjected to repeated chromatography to yield 15 compounds. The structures were determined to be three novel dihydrostilbenes, based on their various spectroscopic data-glycypytilbene A (1), glycydipytilbene (2), and glycypytilbene B (3)-and 12 known compounds, α,α'-dihydro-3,5,4'-trihydroxy-4,3'-diisopentenylstilbene (4), α,α'-dihydro-3,5,3',4'-tetrahydroxy-2,5'-diisopentenylstilbene (5), 6-prenyleriodictyol (6), 5'-prenyleriodictyol (7), 6-prenylquercetin-3-Me ether (8), 5'-prenylquercetin (9), 6-prenylquercetin (10), 6-prenylnaringenin (11), 3'-prenylnaringenin (12), sigmoidin C (13), 8-[(E)-3-hydroxymethyl-2- butenyl]-eriodictyol (14), and quercetin-3-Me ether (15). Most of these chemical constituents inhibited α-glucosidase activity, with the two prenylated quercetin derivatives (9 to 10) being the greatest active (IC50 < 4.0 µg/mL). Compounds 1, 3 to 4, 6 to 7, 9 to 12 impeded the growth of human hepatic stellate cells, with the prenylated flavonoids (6 to 7, 9 to 12) being more robust than their unprenylated counterparts. PRACTICAL APPLICATIONS: This study found that Glycyrrhiza uralensis leaves contain prenylated dihydrostilbenes and flavonoids with inhibiting effects on α-glucosidase and on the proliferation of human hepatic stellate cells, which should prompt the development of G. uralensis leaves for healthy products with anti-diabetic or liver fibrosis-preventing effects.


Assuntos
Proliferação de Células/efeitos dos fármacos , Flavonoides , Glycyrrhiza uralensis/química , Estilbenos , Células Cultivadas , Flavonoides/química , Flavonoides/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Estilbenos/química , Estilbenos/farmacologia
3.
J Agric Food Chem ; 65(2): 510-515, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28019719

RESUMO

To exploit Glycyrrhiza uralensis resources, we examined the bioactive constituents of G. uralensis leaves. Seven chemical components were isolated by repeat column chromatography, and using spectroscopic methods, their structures were determined to be a novel prenylated dihydrostilbene, α,α'-dihydro-3,5,3',4'-tetrahydroxy-2,5'-diprenylstilbene (1); a methylated flavonoid, quercetin-3-Me ether (4); and 5 prenylated flavonoids: 5'-prenylquercetin (3), 8-[(E)-3-hydroxymethyl-2-butenyl]eriodictyol (7), 6-prenyleriodictyol (5), 5'-prenyleriodictyol (6), and 6-prenylquercetin-3-Me ether (2). Compounds 1-7 and their unprenylated counterparts, glycosides, and other related compounds (8-13) were quantitatively analyzed. Using a macroporous resin column, most of these compounds could be enriched in the 40% to 60% ethanol-eluted fractions. Compounds 1-7 showed strong radical scavenging activity toward DPPH, and most of them demonstrated greater inhibitory activity against α-glucosidase than their unprenylated counterparts.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Glycyrrhiza uralensis/química , Flavanonas/isolamento & purificação , Flavanonas/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Hemiterpenos/isolamento & purificação , Hemiterpenos/farmacologia , Estrutura Molecular , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA