Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 720
Filtrar
1.
Thorac Cancer ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720472

RESUMO

BACKGROUND: Solute carrier family 34 member 2 (SLC34A2) has been implicated in the development of various malignancies. However, the clinical significance and underlying molecular mechanisms of SLC34A2 in esophageal squamous cell carcinoma (ESCC) remain elusive. METHODS: Western blotting, quantitative real-time PCR and immunohistochemistry were utilized to evaluate the expression levels of SLC34A2 mRNA/protein in ESCC cell lines or tissues. Kaplan-Meier curves were employed for survival analysis. CCK-8, colony formation, EdU and xenograft tumor model assays were conducted to determine the impact of SLC34A2 on ESCC cell proliferation. Cell cycle was examined using flow cytometry. RNA-sequencing and enrichment analysis were carried out to explore the potential signaling pathways. The autophagic flux was evaluated by western blotting, mRFP-GFP-LC3 reporter system and transmission electron microscopy. Immunoprecipitation and mass spectrometry were utilized for identification of potential SLC34A2-interacting proteins. Cycloheximide (CHX) chase and ubiquitination assays were conducted to test the protein stability. RESULTS: The expression of SLC34A2 was significantly upregulated in ESCC and correlated with unfavorable clinicopathologic characteristics particularly the Ki-67 labeling index and poor prognosis of ESCC patients. Overexpression of SLC34A2 promoted ESCC cell proliferation, while silencing SLC34A2 had the opposite effect. Moreover, SLC34A2 induced autophagy to promote ESCC cell proliferation, whereas inhibition of autophagy suppressed the proliferation of ESCC cells. Further studies showed that SLC34A2 interacted with an autophagy-related protein STX17 to promote autophagy and proliferation of ESCC cells by inhibiting the ubiquitination and degradation of STX17. CONCLUSIONS: These findings indicate that SLC34A2 may serve as a prognostic biomarker for ESCC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38702157

RESUMO

Introduction: Preeclampsia (PE) is a fundamental cause of preterm labor, intrauterine growth restriction, and persistent postpartum hypertension. In the present study, we aimed to investigate the correlation between 24-h urinary protein excretion, serum markers, and placental growth factor and their adverse pregnancy outcomes in patients with PE. Methods: A total of 126 pregnant women with PE (86 cases of mild PE and 40 cases of severe PE, assigned to the observation group) who came to our hospital from March 2019 to December 2021 for regular obstetric checkups and delivery were selected, with 60 healthy pregnant women assigned to the control group. Routine biochemical parameters, 24-h urinary protein quantification, serum parameters, and placental growth factor levels were recorded. The incidence of adverse neonatal pregnancy outcomes and abnormal fetal heart monitoring, neonatal body mass, 1 min Apgar score, and other adverse pregnancy outcomes were also analyzed in the different groups. Results: In comparison with healthy pregnant subjects, PE patients had earlier delivery gestational weeks (P < .05), significantly higher systolic blood pressure (SBP), diastolic blood pressure (DBP), 24-h urinary protein excretion, total cholesterol (TC), triglyceride (TG), D-Dimer and human chorionic gonadotropin (ß-hCG) levels (P < .05), lower albumin (ALB), platelet count, pregnant associated plasma protein A (PAPP-A) and placental growth factor (PLGF) (P < .05), and higher incidence of maternal and perinatal adverse outcomes (P < .05). Conclusions: Combined screening of 24-h urinary protein, PAPP-A, ß-hCG, PLGF, and serum indicators in early pregnancy are essential in predicting PE, allowing timely assessment of the risk of adverse pregnancy, and providing a basis for clinical intervention.

3.
J Mol Graph Model ; 129: 108764, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581901

RESUMO

STING (stimulator of interferon genes) is a crucial protein in the innate immune system's response to viral and bacterial infections. In this study, we investigated the mechanistic and energetic mechanism of the conformational transition process of STING activated by cGAMP binding. We found that the STING connector region undergoes an energetically unfavorable rotation during this process, which is compensated by the favorable interaction between cGAMP and the STING ligand binding domain. We further studied several disease-causing mutations and found that the V155 M mutation facilitates a smoother transition in the STING connector region. However, the V147L mutation exhibits unfavorable conformational transition energy, suggesting it may hinder STING activation pathway that relies on connector region rotation. Despite being labeled as hyperactive, the widespread prevalence of V147L/V147I mutations across species implies a neutral character, indicating complexity in its role. Overall, our analysis deepens the understanding of STING activation within the connector region, and targeting this region with compounds may provide an alternative approach to interfering with STING's function.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/química , Conformação Molecular , Mutação
4.
Eur J Obstet Gynecol Reprod Biol ; 297: 40-49, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38579545

RESUMO

OBJECTIVE: To systematically review and conduct a meta-analysis to assess the effectiveness of dienogest (DNG) in the prolonged conservative drug management of deep infiltrating endometriosis (DIE). The findings from this study are intended to serve as a valuable reference for clinical decision-making regarding medication in the context of DIE. METHODS: Following the PRISMA Statement, we searched EMBASE, PubMed, The Cochrane Library, Web of Science, and Medline databases for relevant literature published in the public domain from the date of establishment of the database until October 2023. Subsequently, all English publications on clinical studies using DNG for the treatment of DIE were included. Studies involving surgical intervention or drug therapy for postoperative recurrence were excluded. All literature included in the review underwent risk assessment of bias. Two evaluators independently screened the publications, conducted a quality assessment of each article and extracted data. We used Revman 5.4 for the meta-analysis of the included literature. RESULTS: Our final analysis consisted of five clinical studies, involving a total of 256 patients. We found that there were significant improvements in the following indicators post-medication as compared to levels before taking the medication: dysmenorrhea (MD = 4.24, 95 % CI: 2.92-5.56, P < 0.00001), non-menstrual pelvic pain (MD = 3.11, 95 % CI: 2.34-3.88, P < 0.00001), dyspareunia (MD = 1.93, 95 % CI: 1.50-2.37, P < 0.00001), dyschezia (MD = 2.48, 95 % CI: 1.83-3.12, P < 0.00001), and rectosigmoid nodule size (MD = 0.32, 95 % CI: 0.18-0.46, P < 0.00001). Compared with pre-medication levels, the following indicators were significantly worse: headache (RR = 0.03, 95 % CI: 0.00-0.23, P = 0.0006), decreased libido (RR = 0.08, 95 % CI: 0.01-0.62, P = 0.02); and there was no significant improvement in dysuria (P > 0.05). CONCLUSION: DNG showed efficacy in relieving pain-related symptoms and significantly reducing the size of the lesions when used in the drug conservative treatment of DIE.

5.
Commun Biol ; 7(1): 512, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684865

RESUMO

Neoantigens derived from somatic mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), the most frequently mutated oncogene, represent promising targets for cancer immunotherapy. Recent research highlights the potential role of human leukocyte antigen (HLA) allele A*11:01 in presenting these altered KRAS variants to the immune system. In this study, we successfully generate and identify murine T-cell receptors (TCRs) that specifically recognize KRAS8-16G12V from three predicted high affinity peptides. By determining the structure of the tumor-specific 4TCR2 bound to KRASG12V-HLA-A*11:01, we conduct structure-based design to create and evaluate TCR variants with markedly enhanced affinity, up to 15.8-fold. This high-affinity TCR mutant, which involved only two amino acid substitutions, display minimal conformational alterations while maintaining a high degree of specificity for the KRASG12V peptide. Our research unveils the molecular mechanisms governing TCR recognition towards KRASG12V neoantigen and yields a range of affinity-enhanced TCR mutants with significant potential for immunotherapy strategies targeting tumors harboring the KRASG12V mutation.


Assuntos
Antígenos de Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Receptores de Antígenos de Linfócitos T , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Animais , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/química , Camundongos , Humanos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Mutação , Imunoterapia
6.
Phys Chem Chem Phys ; 26(13): 10408-10418, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502252

RESUMO

Nuclear transition protein TNP1 is a crucial player mediating histone-protamine exchange in condensing spermatids. A unique combination of intrinsic disorder and multivalent properties turns TNP1 into an ideal agent for orchestrating the formation of versatile TNP-DNA assemblies. Despite its significance, the physicochemical property and the molecular mechanism followed by TNP1 for histone replacement and DNA condensation are still poorly understood. This study reports the first-time in vitro expression and purification of human TNP1 and investigates the hierarchical dynamics of TNP1-DNA interaction using a combination of computational simulations, biochemical assays, fluorescence imaging, and atomic force microscopy. We explored three crucial facets of TNP1-DNA interactions. Initially, we delve into the molecular binding process that entails fuzzy interactions between TNP1 and DNA at the atomistic scale. Subsequently, we analyze how TNP1 binding affects the electrostatic and mechanical characteristics of DNA and influences its morphology. Finally, we study the biomolecular condensation of TNP1-DNA when subjected to high concentrations. The findings of our study set the foundation for comprehending the potential involvement of TNP1 in histone replacement and DNA condensation in spermatogenesis.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Masculino , Humanos , Histonas/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas Nucleares
7.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453527

RESUMO

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Assuntos
Aldeído Oxirredutases , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
8.
J Child Neurol ; : 8830738241239703, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488459

RESUMO

OBJECTIVE: The primary objective was to elucidate the epidemiologic characteristics, risk determinants, and clinical outcomes associated with Pseudomonas aeruginosa-induced meningitis. METHODS: All cases of meningitis caused by Pseudomonas aeruginosa that were treated at the hospital between 2012 and 2022 were retrospectively analyzed and detailed. RESULTS: During a 10-year period, only 10 patients satisfied the inclusion criteria. Three patients had previously undergone neurosurgical procedures and 4 patients had leukemia. CONCLUSIONS: Although Pseudomonas aeruginosa meningitis possesses a low incidence rate, the rate of mortality is high. Patients with leukemia or those who have undergone neurosurgery are the most susceptible to diagnosis. Cases of severe neutropenia present only mild or no cerebrospinal fluid pleocytosis. In patients with sensitive Pseudomonas aeruginosa meningitis, the timely use of anti-Pseudomonas carbapenems for intravenous treatment is highly effective. For drug-resistant Pseudomonas aeruginosa meningitis, intrathecal polymyxins administration can be an effective treatment option.

9.
Angew Chem Int Ed Engl ; 63(14): e202401228, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38354230

RESUMO

Functional thin films, being fabricated by incorporating discrete supramolecular architectures, have potential applications in research areas such as sensing, energy storage, catalysis, and optoelectronics. Here, we have determined that an anion-coordinated triple helicate can be solution-processed into a functional thin film by incorporation into a polymethyl methacrylate (PMMA) matrix. The thin films fabricated by the incorporation of the anion-coordinated triple helicate show multiple optical properties, such as fluorescence, CD, and CPL. In addition, the film has the ability to recognize choline and choline derivatives in a water system. The successful recognition of Ch+ by the film represents the first example of utilizing 'aniono'-supramolecular architectures for biomolecule detection in aqueous solution and opens up a new route for designing biocompatible functional materials.

10.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

11.
Science ; 383(6685): eadj2609, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38305684

RESUMO

Insects rely on a family of seven transmembrane proteins called gustatory receptors (GRs) to encode different taste modalities, such as sweet and bitter. We report structures of Drosophila sweet taste receptors GR43a and GR64a in the apo and sugar-bound states. Both GRs form tetrameric sugar-gated cation channels composed of one central pore domain (PD) and four peripheral ligand-binding domains (LBDs). Whereas GR43a is specifically activated by the monosaccharide fructose that binds to a narrow pocket in LBDs, disaccharides sucrose and maltose selectively activate GR64a by binding to a larger and flatter pocket in LBDs. Sugar binding to LBDs induces local conformational changes, which are subsequently transferred to the PD to cause channel opening. Our studies reveal a structural basis for sugar recognition and activation of GRs.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Açúcares , Percepção Gustatória , Paladar , Animais , Paladar/fisiologia , Percepção Gustatória/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/química , Conformação Proteica
12.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343092

RESUMO

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Assuntos
Hemostáticos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Cisteína , Ácido Hialurônico , Antibacterianos/farmacologia , Bandagens , Maleimidas
13.
Lancet Respir Med ; 12(5): 355-365, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309287

RESUMO

BACKGROUND: Penpulimab is a novel programmed death (PD)-1 inhibitor. This study aimed to establish the efficacy and safety of first line penpulimab plus chemotherapy for advanced squamous non-small-cell lung cancer. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 clinical trial enrolled patients with locally advanced or metastatic squamous non-small-cell lung cancer from 74 hospitals in China. Eligible participants were aged 18-75 years, had histologically or cytologically confirmed locally advanced (stage IIIb or IIIc) or metastatic (stage IV) squamous non-small-cell lung cancer, were ineligible to complete surgical resection and concurrent or sequential chemoradiotherapy, had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, did not have previous systemic chemotherapy for locally advanced or metastatic non-small-cell lung cancer, and had one or more measurable lesions according to RECIST (version 1.1). Participants were randomly assigned (1:1) to receive intravenous penpulimab 200 mg or placebo (excipient of penpulimab injection), plus paclitaxel 175 mg/m2 and carboplatin AUC of 5 intravenously on day 1 every 3 weeks for four cycles, followed by penpulimab or placebo as maintenance therapy. Stratification was done according to the PD-L1 tumour proportion score (<1% vs 1-49% vs ≥50%) and sex (male vs female). The participants, investigators, and other research staff were masked to group assignment. The primary outcome was progression-free survival assessed by the masked Independent Radiology Review Committee in the intention-to-treat population and patients with a PD-L1 tumour proportion score of 1% or more (PD-L1-positive subgroup). The primary analysis was based on the intention-to-treat analysis set (ie, all randomly assigned participants) and the PD-L1-positive subgroup. The safety analysis included all participants who received at least one dose of study drug after enrolment. This trial was registered with ClinicalTrials.gov (NCT03866993). FINDINGS: Between Dec 20, 2018, and Oct 10, 2020, 485 patients were screened, and 350 participants were randomly assigned (175 in the penpulimab group and 175 in the placebo group). Of 350 participants, 324 (93%) were male and 26 (7%) were female, and 347 (99%) were of Han ethnicity. In the final analysis (June 1, 2022; median follow-up, 24·7 months [IQR 0-41·4]), the penpulimab group showed an improved progression-free survival compared with the placebo group, both in the intention-to-treat population (median 7·6 months, 95% CI 6·8--9·6 vs 4·2 months, 95% CI 4·2-4·3; HR 0·43, 95% CI 0·33-0·56; p<0·0001) and in the PD-L1-positive subgroup (8·1 months, 5·7-9·7 vs 4·2 months, 4·1-4·3; HR 0·37, 0·27-0·52, p<0·0001). Grade 3 or worse treatment-emergent adverse events occurred in 120 (69%) 173 patients in the penpulimab group and 119 (68%) of 175 in the placebo group. INTERPRETATION: Penpulimab plus chemotherapy significantly improved progression-free survival in patients with advanced squamous non-small-cell lung cancer compared with chemotherapy alone. The treatment was safe and tolerable. Penpulimab combined with paclitaxel and carboplatin is a new option for first-line treatment in patients with this advanced disease. FUNDING: The National Natural Science Foundation of China, Shanghai Municipal Health Commission, Chia Tai Tianqing Pharmaceutical, Akeso.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Paclitaxel , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Método Duplo-Cego , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , China , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Resultado do Tratamento , Intervalo Livre de Progressão
14.
J Inflamm Res ; 17: 1057-1082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375021

RESUMO

As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.

15.
J Phys Chem Lett ; 15(7): 1956-1961, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346267

RESUMO

The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal-nitrogen-carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.

16.
Chem Commun (Camb) ; 60(20): 2744-2747, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38196399

RESUMO

Herein, we synthesized a type of anion/cation co-doped MoO2 nanosphere as an efficient OER catalyst. The optimized Ni/N-MoO2 exhibited a lower overpotential of 270 mV at 10 mA cm-2 in 24 h. This work provides a unique direction for the synthesis of efficient and stable MoO2-based electrocatalysts for water splitting.

17.
ACS Mater Au ; 4(1): 14-29, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38221923

RESUMO

Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.

18.
ACS Appl Mater Interfaces ; 16(3): 3502-3508, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38192195

RESUMO

ZrCoBi-based half-Heuslers have great potential in power generation applications because of their high thermoelectric performance in both p- and n-type constituents. In this work, n-type ZrCoBi with improved thermoelectric performance has been realized by intensifying the phonon scattering via noble metal doping, e.g., Pd and Pt doping. The carrier concentration was effectively tuned to the optimal range, and the lattice thermal conductivity was greatly suppressed via the strong strain field and mass fluctuation scattering brought about by the large difference in atomic size and mass between Pd or Pt and Co. Consequently, the state-of-art figure of merit zT ∼1 was achieved in Pd- or Pt-doped ZrCoBi. In addition, the average zTavg values for ZrCo0.95Pd0.05Bi and ZrCo0.925Pt0.075Bi have reached 0.58 and 0.51, respectively, which are higher than those of most of the reported n-type ZrCoBi-based and ZrCoSb-based half-Heusler alloys.

19.
Clin Interv Aging ; 19: 109-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250175

RESUMO

Purpose: To explore the predictive value of nutritional risk for all-cause death and functional outcomes among elderly acute stroke patients. Patients and Methods: A total of 479 elderly acute stroke patients were enrolled in this study. The nutritional risk of patients was screened by the GNRI and NRS-2002. The primary outcome was all-cause death, and the secondary outcome was poor prognosis defined as a modified Rankin Scale (mRS) score ≥3. Results: Based on the NRS-2002, patients with nutritional risk had a higher risk of all-cause death at 3 months (adjusted OR: 3.642, 95% CI 1.046~12.689) and at 3 years (adjusted OR: 2.266, 95% CI 1.259~4.076) and a higher risk of adverse functional outcomes at 3 months (adjusted OR: 2.748, 95% CI 1.518~4.972. Based on the GNRI, compared to those without nutritional risk, patients with mild malnutrition also had a higher risk of all-cause death at 3 months (adjusted OR: 7.186, 95% CI 1.550~33.315) and at 3 years (adjusted OR: 2.255, 95% CI 1.211~4.199) and a higher risk of adverse functional outcomes at 3 months (adjusted OR: 1.947, 95% CI 1.030~3.680), so patients with moderate and severe malnutrition had a higher risk of all-cause death at 3 months (adjusted OR: 6.535, 95% CI 1.380~30.945) and at 3 years (adjusted OR: 2.498, 95% CI 1.301~4.799) and a higher risk of adverse functional outcomes at 3 months (adjusted OR: 2.213, 95% CI 1.144~4.279). Conclusion: Nutritional risk increases the risk of poor short-term and long-term outcomes in elderly patients with acute stroke. For elderly stroke patients, we should pay attention to early nutritional risk screening, and effective intervention should be provided to improve the prognosis of such patients.


Assuntos
Desnutrição , Pirimidinas , Acidente Vascular Cerebral , Estirenos , Tiofenos , Idoso , Humanos , Seguimentos , China
20.
Org Biomol Chem ; 22(7): 1495-1499, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293848

RESUMO

We hereby report the ortho-cyanomethylation of aryl fluoroalkyl sulfoxides with acetonitrile through a sulfonium-Claisen-type rearrangement. This reaction enables the incorporation of two valuable functional groups, such as the cyanomethyl group and the fluoroalkylthio group, into arenes. Remarkably, fluoroalkylthio groups, such as SCFH2 and SCF2H, bearing active hydrogen, are well tolerated by the reaction. The success of the reaction relies on the use of an excess amount of acetonitrile and the electronegative effect of fluoroalkyl substituents, both of which promote the electrophilic assembly of sulfoxides with acetonitrile. Consequently, the sulfonium-Claisen rearrangement reaction tolerates a wide variety of fluoroalkyl sulfoxides bearing functional groups including halides, nitriles, ketones, sulfones, and amides, which are appealing for subsequent elaboration and exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA