Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2949-2957, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381955

RESUMO

This study aims to improve the solubility and bioavailability of daidzein by preparing the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals. Specifically, the nanocrystals were prepared with daidzein as a model drug, PEG_(20000), Carbomer_(940), and NaOH as a plasticizer, a gelling agent, and a crosslinking agent, respectively. A two-step method was employed to prepare the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocystals. First, the insoluble drug daidzein was embedded in ß-cyclodextrin to form inclusion complexes, which were then encapsulated in the PEG_(20000)/Carbomer_(940) nanocrystals. The optimal mass fraction of NaOH was determined as 0.8% by the drug release rate, redispersability, SEM morphology, encapsulation rate, and drug loading. The inclusion status of daidzein nanocrystals was determined by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), and X-ray diffraction(XRD) analysis to verify the feasibility of the preparation. The prepared nanocrystals showed the average Zeta potential of(-30.77±0.15)mV and(-37.47±0.64)mV and the particle sizes of(333.60±3.81)nm and(544.60±7.66)nm before and after daidzein loading, respectively. The irregular distribution of nanocrystals before and after daidzein loading was observed under SEM. The redispersability experiment showed high dispersion efficiency of the nanocrystals. The in vitro dissolution rate of nanocrystals in intestinal fluid was significantly faster than that of daidzein, and followed the first-order drug release kinetic model. XRD, FTIR, and TGA were employed to determine the polycrystalline properties, drug loading, and thermal stability of the nanocrystals before and after drug loading. The nanocrystals loaded with daidzein demonstrated obvious antibacterial effect. The nanocrystals had more significant inhibitory effects on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa than daidzein because of the improved solubility of daidzein. The prepared nanocrystals can significantly increase the dissolution rate and oral bioavailability of the insoluble drug daidzein.


Assuntos
Resinas Acrílicas , Nanopartículas , Hidróxido de Sódio , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA