Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Theranostics ; 14(7): 3014-3028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773979

RESUMO

Background: Periostin (POSTN) is a critical extracellular matrix protein in various tumor microenvironments. However, the function of POSTN in thyroid cancer progression remains largely unknown. Methods: Postn and Rag1 knock-out mice and orthotopic mouse models were used to determine the role of POSTN on papillary thyroid tumor progression. Immunofluorescence, cell co-culture, fluorescence in situ hybridization, chromatin immunoprecipitation assay, recombinant protein and inhibitor treatment were performed to explore the underlying mechanisms of POSTN-promoted papillary thyroid tumor growth. Results: POSTN is up-regulated in papillary thyroid tumors and negatively correlates with the overall survival of patients with thyroid cancer. Cancer-associated fibroblast (CAF)-derived POSTN promotes papillary thyroid tumor growth in vivo and in vitro. POSTN deficiency in CAFs significantly impairs CAF-promoted papillary thyroid tumor growth. POSTN promotes papillary thyroid tumor cell proliferation and IL-4 expression through integrin-FAK-STAT3 signaling. In turn, tumor cell-derived IL-4 induces the activation of CAFs and stimulates POSTN expression by activating STAT6. We reveal the crucial role of CAF-derived POSTN and tumor cell-derived IL-4 in driving the development of papillary thyroid tumors through the POSTN-integrin-FAK-STAT3-IL-4 pathway in tumor cells and IL-4-STAT6-POSTN signaling in CAFs. Conclusion: Our findings underscore the significance of POSTN and IL-4 as critical molecular mediators in the dynamic interplay between CAFs and tumor cells, ultimately supporting the growth of papillary thyroid tumors.


Assuntos
Fibroblastos Associados a Câncer , Moléculas de Adesão Celular , Proliferação de Células , Camundongos Knockout , Fator de Transcrição STAT3 , Transdução de Sinais , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Animais , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Fator de Transcrição STAT3/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Camundongos , Humanos , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Interleucina-4/metabolismo , Integrinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Periostina
2.
Front Vet Sci ; 10: 1077473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261112

RESUMO

Introduction: Beauveria spp. and Dastarcus helophoroides Fairmaire adults were simultaneously released to attack elder larvae or pupae of Monochamus alternatus in pine forests in China. However, little is known about the pathogenicity virulence and biosafety of Beauveria spp. on beneficial adults of D. helophoroides, and specific Beauveria bassiana (Bb) strains should be selected for synthetic release together with D. helophoroides. Methods: A total of 17 strains of Beauveria spp. were collected, isolated, and purified, and then their mortality, cadaver rate, LT50, spore production, spore germination rate, and growth rate of D. helophoroide adults were calculated based on 0-20 days data after spore suspension and powder contact. Results and discussion: The lethality rate of BbMQ, BbFD, and BbMH-03 strains to D. helophoroides exceeded 50%, and the cadaver rate reached 70.6%, among which the mortality rate (82.22%), cadaver rate (47.78%), spore production (1.32 × 109 spores/ml), spore germination rate (94.71%), colony dimension (49.15 mm2), and LT50 (10.62 d) of the BbMQ strain were significantly higher than those of other strains (P < 0.01), and the mortality of D. helophoroides adults increased significantly with increased spore suspension concentration, with the highest mortality reaching 92.22%. This strain was identified as Beauveria bassiana by morphological and molecular methods, while the BbWYS strain had a minimum lethality of only 5.56%, which was safer compared to other strains of adult D. helophoroide. Consequently, the biological characteristics and pathogenicity of different Beauveria bassiana strains varied significantly in their effects on D. helophoroide adults, and the safety of different strains should be assessed when they are released or sprayed to control multiple pests in the forest. The BbMQ strain should not be simultaneously sprayed with releasing D. helophoroide adults in the same forest, while the BbWYS strain can be used in concert with D. helophoroide to synergize their effect.

3.
BMC Med ; 21(1): 195, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226166

RESUMO

BACKGROUND: Endometriosis is recognized as a complex gynecological disorder that can cause severe pain and infertility, affecting 6-10% of all reproductive-aged women. Endometriosis is a condition in which endometrial tissue, which normally lines the inside of the uterus, deposits in other tissues. The etiology and pathogenesis of endometriosis remain ambiguous. Despite debates, it is generally agreed that endometriosis is a chronic inflammatory disease, and patients with endometriosis appear to be in a hypercoagulable state. The coagulation system plays important roles in hemostasis and inflammatory responses. Therefore, the purpose of this study is to use publicly available GWAS summary statistics to examine the causal relationship between coagulation factors and the risk of endometriosis. METHODS: To investigate the causal relationship between coagulation factors and the risk of endometriosis, a two-sample Mendelian randomization (MR) analytic framework was used. A series of quality control procedures were followed in order to select eligible instrumental variables that were strongly associated with the exposures (vWF, ADAMTS13, aPTT, FVIII, FXI, FVII, FX, ETP, PAI-1, protein C, and plasmin). Two independent cohorts of European ancestry with endometriosis GWAS summary statistics were used: UK Biobank (4354 cases and 217,500 controls) and FinnGen (8288 cases and 68,969 controls). We conducted MR analyses separately in the UK Biobank and FinnGen, followed by a meta-analysis. The Cochran's Q test, MR-Egger intercept test, and leave-one-out sensitivity analyses were used to assess the heterogeneities, horizontal pleiotropy, and stabilities of SNPs in endometriosis. RESULTS: Our two-sample MR analysis of 11 coagulation factors in the UK Biobank suggested a reliable causal effect of genetically predicted plasma ADAMTS13 level on decreased endometriosis risk. A negative causal effect of ADAMTS13 and a positive causal effect of vWF on endometriosis were observed in the FinnGen. In the meta-analysis, the causal associations remained significant with a strong effect size. The MR analyses also identified potential causal effects of ADAMTS13 and vWF on different sub-phenotypes of endometrioses. CONCLUSIONS: Our MR analysis based on GWAS data from large-scale population studies demonstrated the causal associations between ADAMTS13/vWF and the risk of endometriosis. These findings suggest that these coagulation factors are involved in the development of endometriosis and may represent potential therapeutic targets for the management of this complex disease.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/epidemiologia , Endometriose/genética , Análise da Randomização Mendeliana , Fator de von Willebrand , Fatores de Coagulação Sanguínea , Coagulação Sanguínea/genética
4.
Blood Adv ; 7(19): 5752-5770, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37083684

RESUMO

Bortezomib (bort) is an effective therapeutic agent for patients with multiple myeloma (MM); however, most patients develop drug resistance. Autophagy, a highly conserved process that recycles cytosol or entire organelles via lysosomal activity, is essential for the survival, homeostasis, and drug resistance in MM. Growing evidence has highlighted that E3 ligase tripartite motif-containing protein 21 (TRIM21) not only interacts with multiple autophagy regulators but also participates in drug resistance in various cancers. However, to date, the direct substrates and additional roles of TRIM21 in MM remain unexplored. In this study, we demonstrated that low TRIM21 expression is a factor for relapse in MM. TRIM21 knockdown (KD) made MM cells more resistant to bort, whereas TRIM21 overexpression (OE) resulted in increased MM sensitivity to bort. Proteomic and phosphoproteomic studies of TRIM21 KD MM cells showed that bort resistance was associated with increased oxidative stress and elevated prosurvival autophagy. Our results showed that TRIM21 KD MM cell lines induced prosurvival autophagy after bort treatment, suppressing autophagy by 3-methyladenine treatment or by the short hairpin RNA of autophagy-related gene 5 (ATG5)-restored-bort sensitivity. Indeed, ATG5 expression was increased and decreased by TRIM21 KD and OE, respectively. TRIM21 affected autophagy by ubiquitinating ATG5 through K48 for proteasomal degradation. Importantly, we confirmed that TRIM21 could potentiate the antimyeloma effect of bort through in vitro and in vivo experiments. Overall, our findings define the key role of TRIM21 in MM bort resistance and provide a foundation for a novel targeted therapeutic approach.


Assuntos
Mieloma Múltiplo , Ribonucleoproteínas , Humanos , Autofagia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Proteômica , Fatores de Transcrição , Ribonucleoproteínas/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 15(6): 1475-1504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36801449

RESUMO

BACKGROUND & AIMS: The matricellular protein periostin plays a critical role in liver inflammation, fibrosis, and even carcinoma. Here, the biological function of periostin in alcohol-related liver disease (ALD) was investigated. METHODS: We used wild-type (WT), Postn-null (Postn-/-) mice and Postn-/- mice with periostin recovery to investigate the biological function of periostin in ALD. Proximity-dependent biotin identification analysis identified the protein that interacted with periostin, and coimmunoprecipitation analysis validated the interaction between protein disulfide isomerase (PDI) and periostin. Pharmacological intervention and genetic knockdown of PDI were used to investigate the functional correlation between periostin and PDI in ALD development. RESULTS: Periostin was markedly upregulated in the livers of mice that were fed ethanol. Interestingly, periostin deficiency severely aggravated ALD in mice, whereas the recovery of periostin in the livers of Postn-/- mice significantly ameliorated ALD. Mechanistic studies showed that the upregulation of periostin alleviated ALD by activating autophagy through inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which was verified in murine models treated with the mTOR inhibitor rapamycin and the autophagy inhibitor MHY1485. Furthermore, a protein interaction map of periostin was generated by proximity-dependent biotin identification analysis. Interaction profile analysis identified PDI as a key protein that interacted with periostin. Intriguingly, periostin-mediated enhancement of autophagy by inhibiting the mTORC1 pathway in ALD depended on its interaction with PDI. Moreover, alcohol-induced periostin overexpression was regulated by transcription factor EB. CONCLUSIONS: Collectively, these findings clarify a novel biological function and mechanism of periostin in ALD and the periostin-PDI-mTORC1 axis is a critical determinant of ALD.


Assuntos
Hepatócitos , Hepatopatias Alcoólicas , Camundongos , Animais , Hepatócitos/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Biotina/metabolismo , Hepatopatias Alcoólicas/patologia , Etanol/toxicidade , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia
6.
J Clin Lab Anal ; 36(10): e24680, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36059090

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive form of non-Hodgkin lymphoma. Long noncoding RNA (lncRNA) has been evaluated as prognostic markers in various carcinomas. However, the prognostic value of the lncRNA index in DLBCL has not been fully understood. Hence, this study aimed to identify the prognostic value of lncRNA olfactory receptor family 2 subfamily A member 1-antisense RNA 1 (OR2A1-AS1) in DLBCL. METHODS: The Gene Expression Omnibus (GEO) database was used to obtain the GSE97336 dataset comprising lncRNA expression profiles. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was conducted to evaluate the expression of OR2A1-AS1 in 98 cases of DLBCL. RESULTS: OR2A1-AS1 expression was considerably reduced in DLBCL patients, reduced OR2A1-AS1 expression was linked to a shorter overall survival (OS) and progression-free survival (PFS) in DLBCL patients, especially those with the germinal center B-cell-like subtype (GCB). Multivariate analysis (MVA) revealed that the OR2A1-AS1 index had prognostic significance. Patients with low OR2A1-AS1 expression have a poor prognosis. CONCLUSIONS: OR2A1-AS may represent an effective predictor of patients' outcomes with DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , RNA Longo não Codificante , Receptores Odorantes , Intervalo Livre de Doença , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Prognóstico , RNA Antissenso , RNA Longo não Codificante/genética
7.
J Fungi (Basel) ; 8(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205952

RESUMO

Multidrug resistance, defined as the resistance to multiple drugs in different categories, has been an increasing serious problem. Limited antifungal drugs and the rapid emergence of antifungal resistance prompt a thorough understanding of how the occurrence of multidrug resistance develops and which mechanisms are involved. In this study, experimental evolution was performed under single-azole-drug stress with the model filamentous fungus Neurospora crassa. By about 30 weeks of continuous growth on agar plates containing ketoconazole or voriconazole with weekly transfer, four evolved multidrug-resistant strains 30thK1, 30thK2, 26thV1, and 24thV2 were obtained. Compared to the ancestral strain, all four strains increased resistance not only to commonly used azoles, including ketoconazole, voriconazole, itraconazole, fluconazole, and triadimefon, but also to antifungal drugs in other categories, including terbinafine (allylamine), amorolfine (morpholine), amphotericin B (polyene), polyoxin B (chitin synthesis inhibitor), and carbendazim (ß-tubulin inhibitor). After 8 weeks of growth on agar plates without antifungal drugs with weekly transfer, these evolved strains still displayed multidrug-resistant phenotype, suggesting the multidrug resistance could be stably inherited. Transcriptional measurement of drug target genes and drug transporter genes and deletion analysis of the efflux pump gene cdr4 in the evolved strains suggest that overexpression of cdr4 played a major role in the resistance mechanisms for azoles and terbinafine in the evolved strains, particularly for 30thK2 and 26thV1, and evolved drug-resistant strains had less intracellular ketoconazole accumulation and less disruption of ergosterol accumulations under ketoconazole stress compared to wild type. Mutations specifically present in evolved drug-resistant strains were identified by genome re-sequencing, and drug susceptibility test of knockout mutants for most of mutated genes suggests that mutations in 16 genes, functionally novel in drug resistance, potentially contribute to multidrug resistance in evolved strains.

8.
Front Microbiol ; 12: 769615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899653

RESUMO

Mitogen-activated protein (MAP) kinase pathways function as signaling hubs that are integral for many essential cellular processes, including sexual development. The molecular mechanisms and cross-talk between PR and CWI MAP kinase pathways have been extensively studied during asexual development. However, if these can be extended to sexual development remains elusive. By analyzing genome-wide transcriptional responses to deletion of each of two MAP kinase coding genes mak-2 (PR-MAP kinase pathway) and mak-1 (CWI-MAP kinase pathway) in Neurospora crassa during protoperithecium formation, 430 genes co-regulated by the MAK-1 and MAK-2 proteins were found, functionally enriched at integral components of membrane and oxidoreductase. These genes include 13 functionally known genes participating in sexual development (app, poi-2, stk-17, fsd-1, vsd-8, and NCU03863) and melanin synthesis (per-1, pkh-1, pkh-2, mld-1, scy-1, trn-2, and trn-1), as well as a set of functionally unknown genes. Phenotypic analysis of deletion mutants for the functionally unknown genes revealed that 12 genes were essential for female fertility. Among them, single-gene deletion mutants for NCU07743 (named as pfd-1), NCU02250 (oli), and NCU05948 (named as pfd-2) displayed similar protoperithecium development defects as the Δmak-1 and Δmak-2 mutants, failing to form protoperithecium. Western blotting analysis showed that both phosphorylated and total MAK-1 proteins were virtually abolished in the Δnrc-1, Δmek-2, and Δmak-2 mutants, suggesting that the posttranscriptional regulation of MAK-1 is dependent on the PR-MAP kinase pathway during the protoperithecium development. Taken together, this study revealed the regulatory roles and cross-talk between PR and CWI-MAP kinase pathways during protoperithecium development.

9.
J Proteomics ; 211: 103557, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31669361

RESUMO

Oesophageal squamous cell carcinoma (ESCC) is an aggressive malignancy and a leading cause of cancer-related death worldwide. Lack of effective early diagnosis strategies and ensuing complications from tumour metastasis account for the majority of ESCC death. Thus, identification of key molecular targets involved in ESCC carcinogenesis and progression is crucial for ESCC prognosis. In this study, four pairs of ESCC tissues were used for mRNA sequencing to determine differentially expressed genes (DEGs). 347 genes were found to be upregulated whereas 255 genes downregulated. By screening DEGs plus bioinformatics analyses such as KEGG, PPI and IPA, we found that there were independent interactions between KRT family members. KRT17 upregulation was confirmed in ESCC and its relationship with clinicopathological features were analysed. KRT17 was significantly associated with ESCC histological grade, lymph node and distant metastasis, TNM stage and five-year survival rate. Upregulation of KRT17 promoted ESCC cell growth, migration, and lung metastasis. Mechanistically, we found that KRT17-promoted ESCC cell growth and migration was accompanied by activation of AKT signalling and induction of EMT. These findings suggested that KRT17 is significantly related to malignant progression and poor prognosis of ESCC patients, and it may serve as a new biological target for ESCC therapy. SIGNIFICANCE: Oesophageal cancer is one of the leading causes of cancer mortality worldwide and oesophageal squamous cell carcinoma (ESCC) is the major histological type of oesophageal cancer in Eastern Asia. However, the molecular basis for the development and progression of ESCC remains largely unknown. In this study, RNA sequencing was used to establish the whole-transcriptome profile in ESCC tissues versus the adjacent non-cancer tissues and the results were bioinformatically analysed to predict the roles of the identified differentially expressed genes. We found that upregulation of KRT17 was significantly associated with advanced clinical stage, lymph node and distant metastasis, TNM stage and poor clinical outcome. Keratin 17 (KRT17) upregulation in ESCC cells not only promoted cell proliferation but also increased invasion and metastasis accompanied with AKT activation and epithelial-mesenchymal transition (EMT). These data suggested that KRT17 played an important role in ESCC development and progression and may serve as a prognostic biomarker and therapeutic target in ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Queratina-17 , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Biochem Biophys Res Commun ; 506(1): 161-168, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30340829

RESUMO

PURPOSE: Hypertensive renal injury plays important role in the pathogenesis of end-stage nephropathy and the need for dialysis. Isoliquiritigenin (ISL) is a natural compound with antioxidant and anti-inflammatory activities. In this study, the protective effects of ISL on Angiotensin II (Ang II)- induced apoptosis, inflammation and extracellular matrix production in HK-2 cells were observed and its mechanisms were elucidated. METHODS: Cell survival was determined with MTT assay. Cell cycle and apoptosis was assessed with flow cytometric analysis. The production of cytokines including IL-1ß and TNF-α were evaluated with Elisa. Western blotting assay was used to determine protein levels of apoptosis related signaling, oxidative stress, NF-κB and ECM related molecules. mRNA levels of fibronectin and collagen Ⅳ were detected by RT-qPCR. RESULTS: Ang II significantly inhibited cell survival, induced cell cycle arrest and enhanced cell apoptosis. However, the above effects were markedly alleviated by ISL treatment in a dose-dependent manner. In addition, Ang II significantly induced oxidative stress and NF-κB signaling activation, as well as inflammatory cytokines release. In contrast, these effects were remarkably reversed by ISL via regulation of Nrf2. Notably, Ang II also triggered generation of extracellular matrix, including fibronectin and collagen Ⅳ, which was abolished upon ISL treatment. CONCLUSIONS: Taken together, ISL alleviated the Ang II-induced hypertensive renal injury through suppressing inflammation cytokines, excessive deposition of extracellular matrix and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways. Our findings provided the evidences for exploring the possible mechanism of hypertensive renal injury pathogenesis and identifying novel therapeutic targets.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Hipertensão Renal/tratamento farmacológico , Rim/lesões , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Matriz Extracelular/efeitos dos fármacos , Humanos , Hipertensão Renal/induzido quimicamente , Hipertensão Renal/patologia , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo
11.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26362924

RESUMO

1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.


Assuntos
Actinobacteria/classificação , Carbono-Carbono Liases/genética , Desenvolvimento Vegetal , Plantas/microbiologia , Proteobactérias/classificação , Actinobacteria/enzimologia , Actinobacteria/genética , Sequência de Aminoácidos , Primers do DNA/genética , Etilenos/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Proteobactérias/enzimologia , Proteobactérias/genética
12.
J Bacteriol ; 194(24): 6993-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209241

RESUMO

Most Herbaspirillum seropedicae strains are beneficial endophytes to plants. In contrast, H. seropedicae strain Os34, isolated from rice roots, is pathogenic. The draft genome sequence of strain Os34 presented here allows in-depth comparative genome analyses to understand the specific mechanisms of beneficial and pathogenic Herbaspirillum-plant interactions.


Assuntos
Genoma Bacteriano , Herbaspirillum/genética , Oryza/microbiologia , Raízes de Plantas/microbiologia , Sistemas de Secreção Bacterianos/genética , Sequência de Bases , DNA Bacteriano/genética , Fímbrias Bacterianas/genética , Herbaspirillum/isolamento & purificação , Herbaspirillum/metabolismo , Interações Hospedeiro-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Análise de Sequência de DNA , Sideróforos/biossíntese
13.
J Bacteriol ; 194(24): 6995-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209242

RESUMO

Most Herbaspirillum seropedicae strains are beneficial to plants. In contrast, H. seropedicae strain Os45, isolated from rice roots, is pathogenic. The draft genome sequence of strain Os45 presented here allows an in-depth comparative genome analysis to understand the subtle mechanisms of beneficial and pathogenic Herbaspirillum-plant interactions.


Assuntos
Genoma Bacteriano , Herbaspirillum/genética , Oryza/microbiologia , Raízes de Plantas/microbiologia , Sequência de Bases , DNA Bacteriano/genética , Fímbrias Bacterianas/genética , Herbaspirillum/isolamento & purificação , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , RNA Bacteriano/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA