Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867584

RESUMO

Platelets, produced by megakaryocytes, play unique roles in physiological processes, such as hemostasis, coagulation, and immune regulation, while also contributing to various clinical diseases. During megakaryocyte differentiation, the morphology and function of cells undergo significant changes due to the programmed expression of a series of genes. Epigenetic changes modify gene expression without altering the DNA base sequence, effectively impacting the inner workings of the cell at different stages of growth, proliferation, differentiation, and apoptosis. These modifications also play an important role in megakaryocyte development and platelet biogenesis. However, the specific mechanisms underlying epigenetic processes or the vast epigenetic regulatory network formed by their interactions remain unclear. In this review, we systematically summarize the key roles played by epigenetics in megakaryocyte development and platelet formation, including DNA methylation, histone modification, and non-coding RNA regulation. We expect our review to provide a deeper understanding of the biological processes underlying megakaryocyte development and platelet formation and to inform the development of new clinical interventions aimed at addressing platelet-related diseases and improving patient prognoses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA