Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 13541, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051593

RESUMO

We explore the topological phase, which involves Majorana type topological zero mode fermions (MTZFs) at the edge, using d-wave superfluid with Rashba spin-orbit coupling (SOC) interactions. The self-Hermitian of this MTZF([Formula: see text]) is similar to that of the Majorana fermions (MFs) ([Formula: see text]). We show that, to realize a single MTZF at each edge in superfluid with d-wave pairing in a Majorana type Kramers Doublet (MTKD) state, it is important to lift both the spin and the Dirac Cones degeneracies. These non-Abelian anyons obey the non-Abelian statistics which may be useful to realize topological quantum computation. We suggest that the topological feature could be tested experimentally in superfluids of cold fermionic atoms with laser field induced spin orbit interactions. These studies give a new possible way to investigate the MTZFs in a two-dimensional (2D) system as compared to MFs in the one-dimensional (1D) nano-wire and 2D system, and enrich the theoretical research on finding non-Abelian anyons in topological system.

2.
Sci Rep ; 6: 20721, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853454

RESUMO

The quasi-one-dimensional conductor Li0.9Mo6O17 has been of great interest because of its unusual properties. It has a conducting phase with properties different from a simple Fermi liquid, a poorly understood "insulating" phase as indicated by a metal-"insulator" crossover (a mystery for over 30 years), and a superconducting phase which may involve spin triplet Cooper pairs as a three-dimensional (p-wave) non-conventional superconductor. Recent evidence suggests a density wave (DW) gapping regarding the metal-"insulator" crossover. However, the nature of the DW, such as whether it is due to the change in the charge state or spin state, and its relationship to the dimensional crossover and to the spin triplet superconductivity, remains elusive. Here by performing (7)Li-/(95)Mo-nuclear magnetic resonance (NMR) spectroscopy, we directly observed the charge state which shows no signature of change in the electric field gradient (nuclear quadrupolar frequency) or in the distribution of it, thus providing direct experimental evidences demonstrating that the long mysterious metal-"insulator" crossover is not due to the charge density wave (CDW) that was thought, and the nature of the DW gapping is not CDW. This discovery opens a parallel path to the study of the electron spin state and its possible connections to other unusual properties.

3.
J Phys Condens Matter ; 28(1): 015003, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26571041

RESUMO

We report magnetic dipole field investigation at the atomic scale in a single crystal of quasi-one-dimensional (Q1D) paramagnetic conductor Li0.9Mo6O17, using a paramagnetic electron model and (7)Li-NMR spectroscopy measurements with an externally applied magnetic field B 0 = 9 T. We find that the magnetic dipole field component ([Formula: see text]) parallel to B 0 at the Li site from the Mo electrons has no lattice axial symmetry; it is small around the middle between the lattice a and c axes in the ac-plane with the minimum at the field orientation angle [Formula: see text], while the [Formula: see text] maximum is at [Formula: see text] when B 0 is applied perpendicular to b ([Formula: see text]), where [Formula: see text] represents the direction of [Formula: see text]. Further estimation indicates that [Formula: see text] has a maximum value of 0.35 G at B 0 = 9 T. By minimizing the potential magnetic contributions to the NMR spectra satellites with the NMR spectroscopy measurements at the direction where the value of the magnetic dipole field component [Formula: see text] is ∼0, the behavior of the electron charge statics is exhibited. This work demonstrates that the magnetic dipole field of the Mo electrons is the dominant source of the local magnetic fields at the Li site, and suggests that the unknown metal-'insulator' crossover at low temperatures is not a charge effect. The work also reveals valuable local electric and magnetic field information for further NMR investigation as recently suggested (2012 Phys. Rev. B 85 235128) regarding the unusual properties of the material.

4.
Sci Rep ; 5: 17358, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612317

RESUMO

We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane's model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA