Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 242: 114088, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39003845

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) typically forms biofilms in vivo, which exhibit high resistance and complicate eradication efforts. Additionally, persistent inflammation and excessive oxidative stress can lead to severe lung dysfunction, facilitating bacterial colonization and infection. Herein, we prepared oil-in-water (O/W) nanoemulsions (TD-αT NEs) by using PEG5k-block-PCL5k and α-tocopherol to encapsulate tobramycin (TOB). To enhance TOB's drug load, a hydrophobic ion pair (TDIP) composed of TOB and docosahexaenoic acid (DHA) was pre-prepared. TD-αT NEs was not only easily prepared and aerosolized, but stable in both physics and chemistry. The negatively charged TD-αT NEs facilitated penetration through mucus, reaching infection sites. Subsequently, TD-αT NEs permeated biofilms due to their small size and released drugs via lipase-triggered carrier dissociation, aiding in eradicating internal bacteria within biofilms (with a 16-fold reduction in CFU vs. free TOB group). TD-αT NEs simultaneously exerted superior anti-inflammatory effects, reducing levels of pro-inflammatory cytokines (NO, IL-6, IL-8, and TNF-α) while increasing the level of anti-inflammatory cytokine (IL-10). It was achieved through the upregulation of PPAR-γ and downregulation of NF-κB signaling, thus mitigating the lung damage. In addition, TD-αT NEs demonstrated strong antioxidant activity, alleviating the oxidative stress induced by P. aeruginosa. Notably, when administered via inhalation, TD-αT NEs significantly reduced the lung bacterial burden, lung inflammation, and oxidative stress in vivo compared to TOB solution. TD-αT NEs could prove beneficial in treating chronic pulmonary infections induced by P. aeruginosa through a comprehensive strategy, specifically enhancing biofilm eradication, reducing inflammation, and alleviating oxidative stress.

2.
BMC Pulm Med ; 24(1): 227, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730287

RESUMO

OBJECTIVES: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used for the differential diagnosis of cancer. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may make it difficult to differentiate between benign and malignant lesions. It is crucial to find reliable quantitative metabolic parameters to further support the diagnosis. This study aims to evaluate the value of the quantitative metabolic parameters derived from dynamic FDG PET/CT in the differential diagnosis of lung cancer and predicting epidermal growth factor receptor (EGFR) mutation status. METHODS: We included 147 patients with lung lesions to perform FDG PET/CT dynamic plus static imaging with informed consent. Based on the results of the postoperative pathology, the patients were divided into benign/malignant groups, adenocarcinoma (AC)/squamous carcinoma (SCC) groups, and EGFR-positive (EGFR+)/EGFR-negative (EGFR-) groups. Quantitative parameters including K1, k2, k3, and Ki of each lesion were obtained by applying the irreversible two-tissue compartmental modeling using an in-house Matlab software. The SUV analysis was performed based on conventional static scan data. Differences in each metabolic parameter among the group were analyzed. Wilcoxon rank-sum test, independent-samples T-test, and receiver-operating characteristic (ROC) analysis were performed to compare the diagnostic effects among the differentiated groups. P < 0.05 were considered statistically significant for all statistical tests. RESULTS: In the malignant group (N = 124), the SUVmax, k2, k3, and Ki were higher than the benign group (N = 23), and all had-better performance in the differential diagnosis (P < 0.05, respectively). In the AC group (N = 88), the SUVmax, k3, and Ki were lower than in the SCC group, and such differences were statistically significant (P < 0.05, respectively). For ROC analysis, Ki with cut-off value of 0.0250 ml/g/min has better diagnostic specificity than SUVmax (AUC = 0.999 vs. 0.70). In AC group, 48 patients further underwent EGFR testing. In the EGFR (+) group (N = 31), the average Ki (0.0279 ± 0.0153 ml/g/min) was lower than EGFR (-) group (N = 17, 0.0405 ± 0.0199 ml/g/min), and the difference was significant (P < 0.05). However, SUVmax and k3 did not show such a difference between EGFR (+) and EGFR (-) groups (P>0.05, respectively). For ROC analysis, the Ki had a cut-off value of 0.0350 ml/g/min when predicting EGFR status, with a sensitivity of 0.710, a specificity of 0.588, and an AUC of 0.674 [0.523-0.802]. CONCLUSION: Although both techniques were specific, Ki had a greater specificity than SUVmax when the cut-off value was set at 0.0250 ml/g/min for the differential diagnosis of lung cancer. At a cut-off value of 0.0350 ml/g/min, there was a 0.710 sensitivity for EGFR status prediction. If EGFR testing is not available for a patient, dynamic imaging could be a valuable non-invasive screening method.


Assuntos
Receptores ErbB , Fluordesoxiglucose F18 , Neoplasias Pulmonares , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Receptores ErbB/genética , Masculino , Diagnóstico Diferencial , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Compostos Radiofarmacêuticos , Curva ROC , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico por imagem , Idoso de 80 Anos ou mais , Adenocarcinoma/genética , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Estudos Retrospectivos
3.
Colloids Surf B Biointerfaces ; 236: 113798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377705

RESUMO

Ulcerative colitis (UC) is a chronic and progressive inflammatory disease that damages the colonic mucosa and disrupts the intestinal epithelial barrier. The current clinical treatment for UC is mainly chemotherapy, which has the limited effectiveness and severe side effects. It mainly focuses on the treatment of inflammation while neglecting the repair of the intestinal mucosa and the restoration of the microbiota balance. Here, we aimed to address these challenges by using an amphipathic bile acid -tauroursodeoxycholic acid (TUDCA) to replace cholesterol (CHL) in conventional liposomes. We prepared TUDCA/Emodin liposomes by incorporating the hydrophobic drug emodin. The experimental results indicated that TUDCA/Emodin Lip had uniform particle size distribution, good stability, low cytotoxicity, and exhibited good mucus permeability and anti-inflammatory activity in in vitro experiments, and was able to protect cells from oxidative stress. After oral administration, TUDCA/Emodin Lip significantly alleviated the severity of UC. This was evidenced by increased colon length, decreased inflammation and reduced colonic endoplasmic reticulum stress (ERS). Furthermore, TUDCA/Emodin Lip maintained the normal levels of the tight junction proteins Claudin-1 and ZO-1, thereby restoring the integrity of the intestinal barrier. Importantly, TUDCA/Emodin Lip also promoted the ecological restoration of the gut microbiota, increased overall abundance and diversity. Taken together, TUDCA/Emodin Lip can fundamentally restore intestinal homeostasis, this work provides a new, efficient and easily transformable treatment for UC.


Assuntos
Colite Ulcerativa , Colite , Emodina , Microbioma Gastrointestinal , Ácido Tauroquenodesoxicólico , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Lipossomos , Colo , Inflamação , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Diagnostics (Basel) ; 13(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37370943

RESUMO

SMARCA4-deficient non-small cell lung cancer (NSCLC) is a more recently recognized subset of NSCLC. We describe the 18F-fluorodeoxyglucose (FDG) PET/CT findings in a rare case of SMARCA4-deficient NSCLC and response to therapy. A 45-year-old male patient with a history of heavy smoking (10 years) underwent an 18F-fluorodeoxyglucose (FDG) PET/CT dynamic (chest) + static (whole-body) scan for diagnosis and pre-treatment staging. 18F-FDG PET/CT showed an FDG-avid mass in the upper lobe of the left lung (SUVmax of 22.4) and FDG-avid lymph nodes (LN) in the left pulmonary hilar region (SUVmax of 5.7). In addition, there were multiple metastases throughout the body, including in the distant LNs, adrenal glands, bone, left subcutaneous lumbar region, and brain. Pathological findings confirmed SMARCA4-deficient NSCLC. After four cycles of chemotherapy and immune checkpoint inhibitors (ICI), the patient underwent again an 18F-FDG PET/CT scan (including a dynamic scan) for efficacy evaluation. We report a case that deepens the understanding of the 18F-FDG PET/CT presentation of SMARCA4-deficient NSCLC as well as dynamic imaging features and parametric characteristics.

6.
Diagn Pathol ; 18(1): 16, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759857

RESUMO

BACKGROUND: Pulmonary sclerosing pneumocytoma (PSP) is an uncommon benign neoplasm originated from pneumocyte and PSP with malignant transformation is extremely rare. CASE PRESENTATION: We report a case of PSP of a 65-year-old male patient presented as a lobulated mass in the upper lobe of the left lung, in which part of the stromal round cells transformed to spindle cells with sarcomatoid features and showed no specific differentiation. The patient underwent partial lobectomy without further treatment. No recurrence and metastasis was found after eight month's follow up. CONCLUSIONS: To our knowledge, this is the first case of PSP with sarcomatoid malignant transformation devoid of differentiation. Our case adds the evidence in that a subset of PSP bear malignant potential and more studies are needed in order to determine the treatment and prognosis to such patients.


Assuntos
Neoplasias Pulmonares , Hemangioma Esclerosante Pulmonar , Sarcoma , Neoplasias de Tecidos Moles , Masculino , Humanos , Idoso , Pulmão/patologia , Hemangioma Esclerosante Pulmonar/cirurgia , Hemangioma Esclerosante Pulmonar/patologia , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia
7.
Acta Pharm Sin B ; 12(10): 3934-3951, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213532

RESUMO

The poor prognosis of triple negative breast cancer (TNBC) results from a lack of approved targeted therapies coupled with aggressive proliferation and metastasis, which is associated with high recurrence and short overall survival. Here we developed a strategy by employing tumor-targeted self-assembled nanoparticles to coordinately regulate BACH1 (BTB domain and CNC homology 1) and mitochondrial metabolism. The BACH1 inhibitor hemin and mitochondria function inhibitor berberine derivative (BD) were used to prepare nanoparticles (BH NPs) followed by the modification of chondroitin sulfate (CS) on the surface of BH NPs to achieve tumor targeting (CS/BH NPs). CS/BH NPs were found to be able to inhibit tumor migration and invasion by significantly decreasing the amounts of tumor cell metabolites, glycolysis and metastasis-associated proteins, which were related to the inhibition of BACH1 function. Meanwhile, decreased mitochondrial membrane potential, activated caspase 3/9 and increased ROS production demonstrated coordinated regulation of BACH1 and mitochondrial metabolism. In a xenograft mice model of breast cancer, CS/BH NPs significantly inhibited tumor growth and metastasis due to the synergetic effect of hemin and BD without showing obvious toxicities for major organs. In sum, the results of efficacy and safety experiments suggest potential clinical significance of the prepared self-assembled CS/BH nanoparticles for the treatment of TNBC.

8.
Front Chem ; 10: 941016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958235

RESUMO

A photo-induced C-S radical cross-coupling of aryl iodides and disulfides under transition-metal and external photosensitizer free conditions for the synthesis of aryl sulfides at room temperature has been presented, which features mild reaction conditions, broad substrate scope, high efficiency, and good functional group compatibility. The developed methodology could be readily applied to forge C-S bond in the field of pharmaceutical and material science.

9.
BMC Vet Res ; 17(1): 24, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413361

RESUMO

BACKGROUND: Gut microbial compositional and functional variation can affect health and production performance of farm animals. Analysing metabolites in biological samples provides information on the basic mechanisms that affect the well-being and production traits in farm animals. However, the extent to which host breeds affect the gut microbiome and serum metabolome in meat rabbits is still unknown. In this study, the differences in phylogenetic composition and functional capacities of gut microbiota in two commercial rabbit breeds Elco and Ira were determined by 16S rRNA gene and metagenomic sequencing. The alternations in serum metabolome in the two rabbit breeds were detected using ultra-performance liquid chromatography system coupled with quadrupole time of flight mass spectrometry (UPLC-QTOFMS). RESULTS: Sequencing results revealed that there were significant differences in the gut microbiota of the two breeds studied, suggesting that host breeds affect structure and diversity of gut microbiota. Numerous breed-associated microorganisms were identified at different taxonomic levels and most microbial taxa belonged to the families Lachnospiraceae and Ruminococcaceae. In particular, several short-chain fatty acids (SCFAs) producing species including Coprococcus comes, Ruminococcus faecis, Ruminococcus callidus, and Lachnospiraceae bacterium NK4A136 could be considered as biomarkers for improving the health and production performance in meat rabbits. Additionally, gut microbial functional capacities related to bacterial chemotaxis, ABC transporters, and metabolism of different carbohydrates, amino acids, and lipids varied greatly between rabbit breeds. Several fatty acids, amino acids, and organic acids in the serum were identified as breed-associated, where certain metabolites could be regarded as biomarkers correlated with the well-being and production traits of meat rabbits. Correlation analysis between breed-associated microbial species and serum metabolites revealed significant co-variations, indicating the existence of cross-talk among host-gut microbiome-serum metabolome. CONCLUSIONS: Our study provides insight into how gut microbiome and serum metabolome of meat rabbits are affected by host breeds and uncovers potential biomarkers important for breed improvement of meat rabbits.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Coelhos/sangue , Coelhos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biomarcadores , Feminino , Masculino , RNA Ribossômico 16S , Coelhos/genética
10.
Front Microbiol ; 11: 1835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849435

RESUMO

Understanding how the gut microbiome and short-chain fatty acids (SCFAs) affect finishing weight is beneficial to improve meat production in the meat rabbit industry. In this study, we identified 15 OTUs and 23 microbial species associated with finishing weight using 16S rRNA gene and metagenomic sequencing analysis, respectively. Among these, butyrate-producing bacteria of the family Ruminococcaceae were positively associated with finishing weight, whereas the microbial taxa related to intestinal damage and inflammation showed opposite effects. Furthermore, interactions of these microbial taxa were firstly found to be associated with finishing weight. Gut microbial functional capacity analysis revealed that CAZymes, such as galactosidase, xylanase, and glucosidase, could significantly affect finishing weight, given their roles in regulating nutrient digestibility. GOs related to the metabolism of several carbohydrates and amino acids also showed important effects on finishing weight. Additionally, both KOs and KEGG pathways related to the membrane transportation system and involved in aminoacyl-tRNA biosynthesis and butanoate metabolism could act as key factors in modulating finishing weight. Importantly, gut microbiome explained nearly 11% of the variation in finishing weight, and our findings revealed that a subset of metagenomic species could act as predictors of finishing weight. SCFAs levels, especially butyrate level, had critical impacts on finishing weight, and several finishing weight-associated species were potentially contributed to the shift in butyrate level. Thus, our results should give deep insights into how gut microbiome and SCFAs influence finishing weight of meat rabbits and provide essential knowledge for improving finishing weight by manipulating gut microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA