Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 9961-9972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355652

RESUMO

Introduction: The therapeutic efficacy for airway allergies needs to be improved. Th2 polarization is a primary pathological feature of airway allergies. We constructed chimeric antigen-LgDNA (Lactobacillus rhamnosus DNA) nanoparticles (CAP-NPs). The effects of CAP-NPs on reconciling airway Th2 polarization were tested. Methods: In this study, disulfide bond-linked antigen-major histocompatibility complex II (MHC II)-LgDNA nanoparticles (NPs) were constructed and designated CAP-NPs. An airway Th2 polarization mouse model was established to test the effects of CAP-NPs on suppressing the Th2 response. Results: The CAP-NP components of ovalbumin (OVA), major histocompatibility complex II (MHC II), and LgDNA were confirmed in a series of laboratory tests. The CAP-NPs remained stable at pH7.2 for at least 96 h. In in vitro experiments, CAP-NPs bound to the surface of OVA-specific CD4+ T cells, which resulted in apoptosis of the antigen-specific CD4+ T cells. Removal of any of the three components from the NPs abolished the induction of apoptosis of antigen specific CD4+ T cells. CAP-NPs increased the expression of lysine-specific demethylase 5A (KDM5A) in CD4+ T cells. Histone H3K9 and the gene promoter of caspase 8 were demethylated by KDM5A, which led to transcription and expression of the caspase 8 gene. Administration of CAP-NPs significantly alleviated experimental airway Th2 polarization through activating the caspase 8-apoptosis signaling pathway. Discussion: In this paper, we constructed CAP-NPs that could induce antigen-specific CD4+ T cell apoptosis. Administration of CAP-NPs efficiently alleviated experimental airway Th2 polarization.


Assuntos
Apoptose , Nanopartículas , Ovalbumina , Células Th2 , Animais , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Nanopartículas/química , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Caspase 8/metabolismo , Caspase 8/genética , Feminino , DNA/química , DNA/administração & dosagem , Antígenos/administração & dosagem , Antígenos/química , Linfócitos T CD4-Positivos/efeitos dos fármacos
2.
Gels ; 8(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421563

RESUMO

At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.

3.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563002

RESUMO

Trifolium repens (T. repens) can accumulate significant amounts of heavy metal ions, and has strong adaptability to wide environmental conditions, and relatively large biomass, which is considered a potential plant for phytoremediation. However, the molecular mechanisms of T. repens involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of T. repens exposed to a high-level CdCl2 by investigating the physiological and transcriptomic analyses. The results suggested that T. repens seedlings had a high degree of tolerance to Cd treatment. The roots accumulated higher Cd concentration than leaves and were mainly distributed in the cell wall. The content of MDA, soluble protein, the relative electrolyte leakage, and three antioxidant enzymes (POD, SOD, and APX) was increased with the Cd treatment time increasing, but the CAT enzymes contents were decreased in roots. Furthermore, the transcriptome analysis demonstrated that the differentially expressed genes (DEGs) mainly enriched in the glutathione (GSH) metabolism pathway and the phenylpropanoid biosynthesis in the roots. Overexpressed genes in the lignin biosynthesis in the roots might improve Cd accumulation in cell walls. Moreover, the DEGs were also enriched in photosynthesis in the leaves, transferase activity, oxidoreductase activity, and ABA signal transduction, which might also play roles in reducing Cd toxicity in the plants. All the above, clearly suggest that T. repens employ several different mechanisms to protect itself against Cd stress, while the cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of T. repens.


Assuntos
Metais Pesados , Poluentes do Solo , Trifolium , Cádmio/metabolismo , Cádmio/toxicidade , Glutationa/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Poluentes do Solo/toxicidade , Transcriptoma , Trifolium/genética , Trifolium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA