Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Food Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150703

RESUMO

Mesona chinensis Benth (MCB) is the source of the most commonly consumed herbal beverage in Southeast Asia and China and is thus an economically important agricultural plant. Therefore, optimal extraction and production procedures have significant commercial value. Currently, in terms of green chemistry, researchers are investigating the use of greener solvents and innovative extraction techniques to increase extract yields. This study represents the first investigation of the optimal conditions for ultrasound-assisted deep eutectic solvent (DES) extraction from MCB. The major factors influencing ultrasound-assisted DESs were optimized using the response surface methodcentral-genetic algorithm-back propagation neural networks. This model demonstrated superior predictability and accuracy compared to the RSM model. Various types of DESs were used for the extraction of MCB constituents, with choline chloride-ethylene glycol resulting in the highest yield. The optimal conditions for maximal extraction were the use of choline chloride-ethylene glycol (1:4) as the solvent with a 40% water content, an extraction duration of 60 min at 60°C, and maintaining a leaf-to-solvent ratio of 20 mL/g. Noticeable enhancements in Van der Waals forces and more robust interactions between DESs and the target chemicals were observed relative to those seen with ethanol (70%, v/v) or water. This investigation not only introduced an environmentally friendly approach for highly efficient extraction from MCB but also identified the mechanisms underlying the improved extraction efficacy. These findings have the potential to contribute to the broader utilization of MCB and provide valuable insights into the extraction mechanisms utilizing deep eutectic solvents. PRACTICAL APPLICATION: This work describes an efficient and green ultrasound-assisted deep eutectic solvent (DES) method for Mesona chinensis Benth (MCB) extraction. Molecular dynamics was used to examine the intermolecular interactions between the solvent and the extracted compounds. It is anticipated that green and environmentally friendly solvents, such as DESs, will be used in further research on foods and their bioactive components. With the development of the herbal tea industry, new products made of MCB are becoming increasingly popular, thus gradually making it a research hotspot.

2.
Chem Soc Rev ; 53(18): 9133-9189, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39129564

RESUMO

Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.


Assuntos
Apoptose , Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Bibliotecas de Moléculas Pequenas/química , Imagem Óptica
3.
Photodiagnosis Photodyn Ther ; 49: 104324, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214343

RESUMO

OBJECTIVE: To use ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) to evaluate the choroidal features of neovascular age-related macular degeneration (nAMD) and type 1 macular neovascularization (MNV) attributable to central serous chorioretinopathy (CSC). METHOD: A cross-sectional research was carried out to examine patients with type 1 MNV due to CSC (50 eyes) and nAMD (98 eyes) utilizing UWF SS-OCTA examinations. The scan procedure covered a vertical 20 mm × horizontal 24 mm region with 9 subfields. A typical set of 68 healthy eyes was used for comparison. The effects of different diagnoses on choroidal parameters were assessed using covariance tests, using gender and age as variables. RESULTS: The research showed that all choroidal characteristics were age-related (all p < 0.05). The calculated marginal averages of choroidal thickness (ChT) and choroidal volume (CV) in the central area were substantially lower in the nAMD group than in the CSC group and the normal group after age differences were taken into account (all p < 0.05). In both the superotemporal and temporal areas, the CSC group had a greater choroidal vascular index (CVI) compared to the nAMD group (p < 0.05). Additionally, the CSC group had a greater temporal area choriocapillaris density (CCD) than the nAMD group (p < 0.05). CONCLUSION: At the choroidal level, type 1 MNV due to CSC and nAMD may be distinguished by UWF SS-OCTA. Compared to the nAMD affected eyes, the CSC affected eyes had increased ChT, CV, CVI, and CCD in several areas. The two diseases could be distinguished based on ChT and CV.

4.
Talanta ; 279: 126561, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047628

RESUMO

Acute lung injury (ALI) is a serious pulmonary inflammatory disease resulting from excessive reactive oxygen species (ROS) which could cause the damage of the alveolar epithelial cells and capillary endothelial cells. Peroxynitrite, as one of short-lived reactive oxygen species, is closely related to the process of ALI. Thus, it is important to monitor the fluctuation of peroxynitrite in living system for understanding the process of ALI. Herein, the novel mitochondria-targeted fluorescent probe BHMT was designed to respond to peroxynitrite and pH with distinct fluorescence properties respectively. The absorption spectrum of the probe BHMT exhibited a notable red shift as the pH value declined from 8.8 to 2.6. Upon reaction with peroxynitrite, BHMT had a significant increase of fluorescence intensity (63-fold) with maintaining a detection limit of only 43.7 nM. Furthermore, BHMT could detect the levels of endogenous peroxynitrite and image the intracellular pH in ratiometric channels utilizing cell imaging. In addition, BHMT was successfully applied to revealing the relationship between the peroxynitrite and the extent of ALI. Thus, these results indicated the probe BHMT could be a potential tool for diagnosing the early stage of ALI and revealed the peroxynitrite was likely to be a crucial therapeutic target in ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Corantes Fluorescentes , Mitocôndrias , Ácido Peroxinitroso , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/análise , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Humanos , Animais , Concentração de Íons de Hidrogênio , Camundongos , Imagem Óptica , Masculino
5.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946486

RESUMO

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Assuntos
Antineoplásicos , Desenho de Fármacos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Patentes como Assunto , Inibidores de Proteínas Quinases , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Química Farmacêutica , Desenvolvimento de Medicamentos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
Heliyon ; 10(9): e30640, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774102

RESUMO

The skeletal muscle is the largest organ in mammals and is the primary motor function organ of the body. Our previous research has shown that long non-coding RNAs (lncRNAs) are significant in the epigenetic control of skeletal muscle development. Here, we observed progressive upregulation of lncRNA 4930581F22Rik expression during skeletal muscle differentiation. Knockdown of lncRNA 4930581F22Rik hindered skeletal muscle differentiation and resulted in the inhibition of the myogenic markers MyHC and MEF2C. Furthermore, we found that lncRNA 4930581F22Rik regulates myogenesis via the ERK/MAPK signaling pathway, and this effect could be attenuated by the ERK-specific inhibitor PD0325901. Additionally, in vivo mice injury model results revealed that lncRNA 4930581F22Rik is involved in skeletal muscle regeneration. These results establish a theoretical basis for understanding the contribution of lncRNAs in skeletal muscle development and regeneration.

7.
BMC Ophthalmol ; 24(1): 176, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632531

RESUMO

OBJECTIVE: In this study, we used ultra-wide field swept-source optical coherence tomography angiography (UWF SS-OCTA) to assess changes in retinal thickness (RT) and choroidal parameters in individuals who had received a diagnosis of central serous chorioretinopathy (CSC). METHODS: The study encompassed the evaluation of 59 eyes from 47 patients with a diagnosis of CSC, alongside 33 fellow eyes and 31 eyes from healthy individuals (controls). The parameters assessed included RT, choroidal thickness (CT), choriocapillaris density, vascular density of the large choroidal vessel layer, three-dimensional choroidal vascularity index (3D-CVI), choroidal vessel volume per unit area (mCVV/a), and choroidal stroma volume per unit area (mCSV/a). RESULTS: Metrics including mCVV/a, mCSV/a, 3D-CVI, CT, and RT exhibited significantly elevated values in the eyes affected by CSC compared to those of the control group across nine subfields. Moreover, a substantial number of the subfields in both CSC-affected and fellow eyes exhibited increased values for mCVV/a, mCSV/a, 3D-CVI, CT, and RT when compared with the control group. Additionally, acute and chronic CSC subfields demonstrated significantly elevated values for mCVV/a, mCSV/a, 3D-CVI, CT, and RT in comparison to healthy control eyes. Notably, specific subfields associated with complex and atypical forms of CSC revealed higher metrics compared to those of the control group. CONCLUSION: In conclusion, the UWF SS-OCTA proved to be a valuable tool for exploring the anatomical etiology and clinical classification and diagnosis of CSC.


Assuntos
Coriorretinopatia Serosa Central , Humanos , Coriorretinopatia Serosa Central/diagnóstico , Estudos Transversais , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Corioide/irrigação sanguínea , Estudos Retrospectivos
9.
Int Orthop ; 48(6): 1489-1499, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38443716

RESUMO

PURPOSE: To compare the outcomes of type II pediatric phalangeal neck fractures (PPNFs) treated with closed reduction and cast immobilization (CRCI) versus closed reduction percutaneous pinning (CRPP), and evaluated the clinical efficacy of conservative versus surgical treatment of type II PPNFs via meta-analysis. METHODS: Patients aged ≤ 14 years with type II PPNFs were divided into conservative (CRCI) and operative (CRPP) groups. Radiographs measured angulation and translation; hand function was assessed with total active range of motion (TAM) and Quick-DASH. Complication rates were also compared between the groups. A meta-analysis of conservative versus operative treatment confirmed the clinical results. Statistical analysis was performed using SPSS 26.0 and R studio 3.0 with two-tailed, chi-squared, and Mann-Whitney U or t-tests, P < 0.05. Meta-analysis used fixed or random effects models, calculating mean differences and odds ratios for outcomes, and assessing heterogeneity with I2 and Q tests. RESULTS: Final angulation (3.4° ± 3.7° and 4.9° ± 5.4° vs. 3.6° ± 3.7° and 4.2° ± 4.3°) and displacement (6.3% ± 5.8% and 5.7% ± 4.7% vs. 5.8% ± 5.5% and 3.2% ± 4.2%) in the coronal and sagittal planes were not different statistically between the conservative and surgical groups (P > 0.05), but improved significantly compared to preoperative values (P < 0.05). Although Quick-DASH scores were comparable in both groups (P = 0.105), conservatively treated patients had a significantly better TAM at the last follow-up visit (P = 0.005). The complication rates were 24.2% and 41.7% in the surgical and conservatively treated groups respectively (P = 0.162). However, the latter primarily experienced imaging-related complications, whereas the former experienced functional complications (P = 0.046). Our meta-analysis (n = 181 patients) also showed comparable functional (P = 0.49) and radiographic (P = 0.59) outcomes and complication rates (P = 0.21) between the surgical (94 patients) and conservative (87 patients) groups. CONCLUSIONS: Conservative and surgical treatments are both reliable and safe approaches for managing type II PPNF in children. However, conservatively treated patients generally experience similar radiographic outcomes, lower complication rates, and better functional outcomes than surgically treated ones.


Assuntos
Fios Ortopédicos , Moldes Cirúrgicos , Falanges dos Dedos da Mão , Humanos , Criança , Falanges dos Dedos da Mão/lesões , Falanges dos Dedos da Mão/cirurgia , Masculino , Feminino , Adolescente , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/efeitos adversos , Resultado do Tratamento , Fraturas Ósseas/cirurgia , Amplitude de Movimento Articular , Pré-Escolar
10.
Int J Mol Med ; 53(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299238

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the EdU staining assay data shown in Figs. 4C and 5C and the western blotting data shown in Fig. 4E were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time. Owing to the fact that contentious data in the above article had already been submitted for publication elsewhere prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 48: 169, 2021; DOI: 10.3892/ijmm.2021.5002].

11.
Cell Mol Life Sci ; 81(1): 57, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279052

RESUMO

The Wnt/ß-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the ß-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of ß-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the ß-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3ß and CK1α were unsuccessfully recruited, preventing ß-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of ß-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.


Assuntos
Complexo de Sinalização da Axina , beta Catenina , Humanos , Complexo de Sinalização da Axina/genética , Proteína Axina/genética , Proteína Axina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Separação de Fases , Mutação/genética , Via de Sinalização Wnt/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo
12.
Prog Biophys Mol Biol ; 187: 36-50, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280492

RESUMO

Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.


Assuntos
Campos Eletromagnéticos , Células-Tronco Mesenquimais , Diferenciação Celular , Cicatrização , Células-Tronco
13.
Sci Adv ; 9(51): eadj6856, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117876

RESUMO

Soft materials with mechanical adaptability have substantial potential for various applications in tissue engineering. Gaining a deep understanding of the structural evolution and adaptation dynamics of soft materials subjected to cyclic stretching gives insight into developing mechanically adaptive materials. Here, we investigate the effect of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching training. A polyampholyte hydrogel, composed of hierarchical structures including ionic bonds, transient and permanent polymer networks, and bicontinuous hard/soft-phase networks, is adopted as a model. Conditions for effective training, mild overtraining, and fatal overtraining are demonstrated in soft materials. We further reveal that mesoscale hard/soft-phase networks dominate the long-term memory effect of training and play a crucial role in the asymmetric dynamics of compliance changes and the symmetric dynamics of hydrogel shape evolution. Our findings provide insights into the design of hierarchical structures for adaptive soft materials.

14.
Phys Chem Chem Phys ; 25(47): 32525-32533, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997746

RESUMO

Catalytic conversion of N2O and CO into nonharmful gases is of great significance to reduce their adverse impact on the environment. The potential of the WSi12 superatom to serve as a new cluster catalyst for CO oxidation by N2O is examined for the first time. It is found that WSi12 prefers to adsorb the N2O molecule rather than the CO molecule, and the charge transfer from WSi12 to N2O results in the full activation of N2O into a physically absorbed N2 molecule and an activated oxygen atom that is attached to an edge of the hexagonal prism structure of WSi12. After the release of N2, the remaining oxygen atom can oxidize one CO molecule via overcoming a rate-limiting barrier of 28.19 kcal mol-1. By replacing the central W atom with Cr and Mo, the resulting MSi12 (M = Cr and Mo) superatoms exhibit catalytic performance for CO oxidation comparable to the parent WSi12. In particular, the catalytic ability of WSi12 for CO oxidation is well maintained when it is extended into tube-like WnSi6(n+1) (n = 2, 4, and 6) clusters with energy barriers of 25.63-29.50 kcal mol-1. Moreover, all these studied MSi12 (M = Cr, Mo, and W) and WnSi6(n+1) (n = 2, 4, and 6) species have high structural stability and can absorb sunlight to drive the catalytic process. This study not only opens a new door for the atomically precise design of new silicon-based nanoscale catalysts for various chemical reactions but also provides useful atomic-scale insights into the size effect of such catalysts in heterogeneous catalysis.

15.
Biomacromolecules ; 24(12): 5859-5870, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015033

RESUMO

Nano scale topography scaffold is more bioactive and biomimetic than smooth fiber topographies. Tendon stem cells (TSCs) play important roles in the tendinogenesis of tendon tissue engineering, but the effects and mechanisms of nano topography on TSC behavior are still unclear. This study determined whether the morphology, proliferation, cytoskeleton, and differentiation of TSCs are affected by topography of scaffold in vitro. The porous PA56 scaffolds were prepared with different concentration ratios of glycerol as the molecular template by electrospinning. Its topological characteristics, hydrophilicity, and degradation properties varied with glycerol proportion and movement rate of the receiving plate. Porous fibers promoted the proliferation of TSCs and the number of TSCs varied with topography. Although there was no significant difference due to the small sample size, the number of pseudopodia and cell polarizability still showed differences among different topographies. The morphology of actin cytoskeleton of TSCs showed difference among cultured on porous fibers, smooth fibers, and in culture media with no fiber, suggesting the orientation growth of cells on porous fiber. Moreover, porous fibers promoted teno-lineage differentiation of TSCs by upregulating tendon-specific gene expression. These findings provide evidence that nano porous topography scaffold promotes TSC proliferation, cytoskeleton orientation, and tenogenic differentiation.


Assuntos
Glicerol , Nanoporos , Tendões , Células-Tronco , Engenharia Tecidual , Diferenciação Celular , Proliferação de Células
16.
Int J Ophthalmol ; 16(10): 1642-1650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854371

RESUMO

AIM: To assess the long-term outcomes of treating macular edema (ME) associated with central retinal vein occlusion (CRVO) with a regimen of "5+pro re nata (PRN)". METHODS: This retrospective study included 27 eyes of 27 patients with ME associated with non-ischemic CRVO (non-iCRVO group, n=15) and ischemic CRVO (iCRVO group, n=12). The eyes were treated with five consecutive intravitreal injections of conbercept or ranibizumab, followed by reinjections as needed or PRN. Retinal laser photocoagulation or intravitreal dexamethasone implants (DEX) were implemented in both groups when necessary. The best-corrected visual acuity (BCVA, logMAR) and central retinal thickness (CRT) were recorded at baseline, at 1, 2, 3, 4, 5, 6, and 12mo, and at the final visit. The efficacy rates of BCVA and CRT before and after treatment were calculated. The number of injections at each visit and the incidence of adverse events were also recorded. RESULTS: The patients, aged 59.4±15.1y, were followed up for 24.7±8.8mo (range: 15-42mo). After treatment, BCVA improved significantly from 1.04±0.56 logMAR at baseline to 0.59±0.36 logMAR (P=0.038) at the final visit in all patients. Both the non-iCRVO and the iCRVO groups achieved improved BCVA compared to the baseline at all visit points, but there was no statistical significance (P=0.197 and 0.33, respectively). The mean CRT was statistically reduced compared to baseline at all visit points in all the eyes and in both groups (all P<0.001). The apparent effective rate was 22.22% for BCVA and 37.04% for CRT after the first injection, 48.15% for BCVA and 62.96% for CRT after 5 consecutive injections, and 74.08% for BCVA and 100% for CRT at the end of follow up. The average number of injections in all patients was 9.0±2.4 at 12mo and 14.9±8.1 finally with no statistical significance between both groups (P>0.05). Laser treatment was applied to all eyes in the iCRVO group, while only 5 patients in the non-iCRVO group. Six patients in the non-iCRVO group and 3 patients in the iCRVO group had a drug switch. DEX was applied to 4 eyes in the non-iCRVO group and 5 eyes in the iCRVO group. CONCLUSION: The 5+PRN anti-vascular endothelial growth factor (VEGF) regimen is found to be safe and effective for both iCRVO and non-iCRVO, especially in the iCRVO group. The best regimen for such patients needs to be further investigated. Adjuvant laser therapy and DEX are necessary in some cases.

17.
Cell Death Dis ; 14(9): 581, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658049

RESUMO

Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an RNA-binding protein, is associated with tumorigenesis and progression. However, the exact molecular mechanisms of IGF2BP3 in colorectal cancer (CRC) oncogenesis, progression, and drug resistance remain unclear. This study found that IGF2BP3 was upregulated in CRC tissues. Clinically, the elevated IGF2BP3 level is predictive of a poor prognosis. Functionally, IGF2BP3 enhances CRC tumorigenesis and progression both in vitro and in vivo. Mechanistically, IGF2BP3 promotes epidermal growth factor receptor (EGFR) mRNA stability and translation and further activates the EGFR pathway by serving as a reader in an N6-methyladenosine (m6A)-dependent manner by cooperating with METTL14. Furthermore, IGF2BP3 increases the drug resistance of CRC cells to the EGFR-targeted antibody cetuximab. Taken together, our results demonstrated that IGF2BP3 was a functional and clinical oncogene of CRC. Targeting IGF2BP3 and m6A modification may therefore offer rational therapeutic targets for patients with CRC.


Assuntos
Neoplasias Colorretais , Receptores ErbB , Humanos , Anticorpos , Carcinogênese , Transformação Celular Neoplásica , Cetuximab , RNA Mensageiro
18.
Oncogene ; 42(38): 2841-2853, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591954

RESUMO

Proficient mismatch repair or microsatellite stable (pMMR/MSS) colorectal cancers (CRCs) are vastly outnumbered by deficient mismatch repair or microsatellite instability-high (dMMR/MSI-H) tumors and lack a response to immune checkpoint inhibitors (ICIs). In this study, we reported two distinct expression patterns of ASCL2 in pMMR/MSS and dMMR/MSI-H CRCs. ASCL2 is overexpressed in pMMR/MSS CRCs and maintains a stemness phenotype, accompanied by a lower density of tumor-infiltrating lymphocytes (TILs) than those in dMMR/MSI CRCs. In addition, coadministration of anti-PD-L1 antibodies facilitated T cell infiltration and provoked strong antitumor immunity and tumor regression in the MC38/shASCL2 mouse CRC model. Furthermore, overexpression of ASCL2 was associated with increased TGFB levels, which stimulate local Cancer-associated fibroblasts (CAFs) activation, inducing an immune-excluded microenvironment. Consistently, mice with deletion of Ascl2 specifically in the intestine (Villin-Cre+, Ascl2 flox/flox, named Ascl2 CKO) revealed fewer activated CAFs and higher proportions of infiltrating CD8+ T cells; We further intercrossed Ascl2 CKO with ApcMin/+ model suggesting that Ascl2-deficient expression in intestinal represented an immune infiltrating environment associated with a good prognosis. Together, our findings indicated ASCL2 induces an immune excluded microenvironment by activating CAFs through transcriptionally activating TGFB, and targeting ASCL2 combined with ICIs could present a therapeutic opportunity for MSS CRCs.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Instabilidade de Microssatélites , Repetições de Microssatélites
19.
Colloids Surf B Biointerfaces ; 228: 113393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327653

RESUMO

The mechanical properties of a stem cell culture substrate significantly impact cell adhesion, survival, migration, proliferation, and differentiation in vitro. A major challenge in engineering artificial stem cell substrate is to properly identify the relevant physical features of native stem cell niches, which are likely different for each stem cell type. The behavior of tendon stem cells has potentially significant implications for tendon repair. Here, microfiber scaffolds with various modulus of elasticity are fabricated by near-field electrospinning, and their regulating effects on the in vitro behavior of tendon stem cells (TSCs) are discussed in this study. The number of pseudopodia shows a biphasic relationship with the modulus of scaffold. The proliferation, polarization ratio and alignment degree along the fibers of the TSCs increase with the increase of fiber modulus. TSCs cultured on the scaffold with moderate modulus (1429 MPa) show the upregulation of tendon-specific genes (Col-I, Tnmd, SCX and TNCF). These microfiber scaffolds provide great opportunities to modulate TSCs behavior at the micrometer scales. In conclusion, this study provides an instructive mechanical microenvironment for TSCs behaviors and may lead to the development of desirable engineered artificial stem cell substrate for tendon healing.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Tendões , Células-Tronco , Diferenciação Celular/genética , Expressão Gênica , Proliferação de Células , Regulação da Expressão Gênica
20.
Sci Rep ; 13(1): 7256, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142702

RESUMO

In the sulfotransferase (SULT) superfamily, members of the SULT1 family mainly catalyse the sulfonation reaction of phenolic compounds, which is involved in the phase II metabolic detoxification process and plays a key role in endocrine homeostasis. A coding variant rs1059491 in the SULT1A2 gene has been reported to be associated with childhood obesity. This study aimed to investigate the association of rs1059491 with the risk of obesity and cardiometabolic abnormalities in adults. This case‒control study included 226 normal weight, 168 overweight and 72 obese adults who underwent a health examination in Taizhou, China. Genotyping of rs1059491 was performed by Sanger sequencing in exon 7 of the SULT1A2 coding region. Chi-squared tests, one-way ANOVA, and logistic regression models were applied. The minor allele frequencies of rs1059491 in the overweight combined with obesity and control groups were 0.0292 and 0.0686, respectively. No differences in weight and body mass index were detected between the TT genotype and GT + GG genotype under the dominant model, but the levels of serum triglycerides were significantly lower in G-allele carriers than in non-G-allele carriers (1.02 (0.74-1.32) vs. 1.35 (0.83-2.13) mmol/L, P = 0.011). The GT + GG genotype of rs1059491 versus the TT genotype reduced the risk of overweight and obesity by 54% (OR 0.46, 95% CI 0.22-0.96, P = 0.037) after adjusting for sex and age. Similar results were observed for hypertriglyceridaemia (OR 0.25, 95% CI 0.08-0.74, P = 0.013) and dyslipidaemia (OR 0.37, 95% CI 0.17-0.83, P = 0.015). However, these associations disappeared after correction for multiple tests. This study revealed that the coding variant rs1059491 is nominally associated with a decreased risk of obesity and dyslipidaemia in southern Chinese adults. The findings will be validated in larger studies including more detailed information on genetic background, lifestyle and weight change with age.


Assuntos
Arilsulfotransferase , Dislipidemias , Obesidade , Sobrepeso , Adulto , Humanos , Alelos , Arilsulfotransferase/genética , Índice de Massa Corporal , Estudos de Casos e Controles , Dislipidemias/genética , População do Leste Asiático , Genótipo , Sobrepeso/genética , Polimorfismo de Nucleotídeo Único , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA