Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; : 1-11, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016246

RESUMO

Phytoremediation enhanced by electric field has been considered a green and low-cost technology for remediating heavy metal-contaminated soils. Soil moisture is a main environmental factor that affects Cd availability in the soil. However, the effects of soil moisture and AC-electric field on the remediation efficiency of willow (Salix spp.) and S. Alfredii interplanted together remain unclear. In the present study, we designed four treatments (60% soil field capacity, 60% soil field capacity + 0.5 V·cm-1 AC, 100% soil field capacity, 100% soil field capacity + 0.5 V·cm-1 AC) to explore the impacts of soil moisture and AC-electric field on soil Cd availability and Cd accumulation in plants. The results showed that the application of an AC-electric field significantly increased soil Cd availability by 20.9% and 10.8% under both 60% and 100% soil field capacity, respectively. Both high water with and without AC-electric field treatments reduced the proportion of acid-extractable and reducible Cd of soil but increased the proportion of residual Cd. Compared with the control, an AC-electric field with 60% soil field capacity significantly enhanced the biomass of S. Alfredii shoots by 31.2% and increased Cd accumulation in willow leaves and S. Alfredii shoots by 14.6% and 32.3%, respectively. In addition, the biomass production of willow was significantly enhanced but the uptake of Cd by willow was dramatically decreased under an AC-electric field with high water treatment. Therefore, these results suggest that the AC-electric field combined with 60% soil field capacity may be a more promising remediation technique to clean up the Cd-contaminated soil.

2.
Environ Sci Pollut Res Int ; 30(52): 112813-112824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845595

RESUMO

Heavy metal contamination to soil is tricky due to its difficult removal, long retention time, and biomagnified toxicity. The green and low-cost phytoremediation with electric field treatment and planting pattern selection is an emerging and more effective approach to remove heavy metals from soils. In this study, alternating current (AC) electric field-assisted phytoremediation was examined with different planting patterns, i.e., monoculture willow (Salix sp.), monoculture Sedum alfredii Hance, and interplanting of willow and S. alfredii. AC electric field greatly increased phytoremediation efficiency to soil cadmium (Cd) regardless of planting patterns, either single plant species of willow or S. alfredii. The Cd removal capacity of willow and S. alfredii raises apparently under 0.5 V cm-1 AC electric field. Under different planting patterns of AC electric field treatment, Cd accumulation in the whole plant by interplanting was 5.63 times higher than monoculture willow, but only 0.75 times as high as monoculture S. alfredii. The results showed that AC electric field-assisted interplanting of willow and S. alfredii is a promising remediation technique for efficiently clean-up Cd-contaminated soil.


Assuntos
Metais Pesados , Salix , Sedum , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Solo
3.
Ecotoxicol Environ Saf ; 259: 115044, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216863

RESUMO

Potentially toxic elements (PTEs) in cultivated lands pose serious threats to the environment and human health. Therefore, improving the understanding of their distinct sources and environmental risks by integrating various methods is necessary. This study investigated the distribution, sources, and environmental risks of eight PTEs in cultivated soils in Lishui City, eastern China, using digital soil mapping, positive matrix factorisation (PMF), isotopic tracing, and Monte Carlo simulation. The results showed that Pb and Cd are the main pollutants, which posed higher ecological risks in the study area than the other PTEs. Natural, mining, traffic, and agricultural sources were identified as the four determinants of PTE accumulation via a PMF model combined with Pearson correlation analysis, showing that their contribution rates were 22.6 %, 45.7 %, 15.2 %, and 16.5 %, respectively. Stable isotope analysis further confirmed that local mining activities affected the HM accumulation. Additionally, non-carcinogenic and carcinogenic risk values for children were 3.18 % and 3.75 %, respectively, exceeding their acceptable levels. We also identified that mining activities were the most important sources of human health risks (55.7 % for adults and 58.6 % for children) via Monte Carlo simulations coupled with the PMF model. Overall, this study provides insights into the PTE pollution management and health risk control in cultivated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Metais Pesados/análise , Monitoramento Ambiental/métodos , Método de Monte Carlo , Poluentes do Solo/análise , Medição de Risco/métodos , China
4.
Huan Jing Ke Xue ; 44(4): 2338-2347, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040982

RESUMO

Fungal residue is a unique abundant organic material undervalued in agricultural production. The application of chemical fertilizer combined with fungal residue can not only improve soil quality but also regulate the microbial community. However, it is unclear whether the response of soil bacteria and fungi to the combined application of fungal residue and chemical fertilizer is consistent. Therefore, a long-term positioning experiment in a rice field was conducted with a total of nine treatments. Chemical fertilizer (C) and fungal residue (F) were applied at 0, 50%, and 100% to evaluate 1 the change in soil fertility properties and microbial community structure and 2 the main driving factors of soil microbial diversity and species composition. The results showed that soil total nitrogen (TN) was highest after treatment C0F100 (55.56% higher than in the control), and the carbon to nitrogen ratio (C/N), total phosphorus (TP), dissolved organic carbon (DOC), and available phosphorus (AP) contents were highest after treatment with C100F100(26.18%, 26.46%, 17.13%, and 279.54% higher than in the control, respectively). The amounts of soil organic carbon (SOC), available nitrogen (AN), available potassium (AK), and pH were highest after treatment with C50F100 (85.57%, 41.61%, 29.33%, and 4.62% higher than in the control, respectively). Following the application of fungal residue with chemical fertilizer, there were significant changes in the α-diversity of bacteria and fungi in each treatment. Compared with that of the control (C0F0), different long-term applications of fungal residue with chemical fertilizer did not significantly change soil bacterial ß-diversity but resulted in significant differences in fungal ß-diversity, and the relative abundance of soil fungal Ascomycota and Sordariomycetes significantly decreased after the application of C50F100. The random forest prediction model indicated that AP and C/N were the main driving factors of bacterial and fungal α-diversity, respectively, and AN, pH, SOC, and DOC were the main driving factors of bacterial ß-diversity, whereas AP and DOC were the main driving factors of fungal ß-diversity. Correlation analysis suggested that the relative abundance of soil fungal Ascomycota and Sordariomycetes had a significantly negative correlation with SOC, TN, TP, AN, AP, AK, and C/N. PERMANOVA showed that variation in soil fertility properties, dominant species of soil bacteria at the phylum and class level, and dominant species of soil fungi at the phylum and class level were all best explained by fungal residue (46.35%, 18.47%, and 41.57%, respectively), and variation in bacterial diversity was best explained by fungal residue (23.84%) and to a lesser extent by the interaction between fungal residue and chemical fertilizer (9.90%). In contrast, the variation in fungal diversity was best explained by the interaction between fungal residue and chemical fertilizer (35.00%) and to a lesser extent by fungal residue (10.42%). In conclusion, the application of fungal residue has more advantages than chemical fertilizer in influencing soil fertility properties and microbial community structure changes.


Assuntos
Microbiota , Solo , Solo/química , Fertilizantes/análise , Carbono/química , Microbiologia do Solo , Bactérias , Fósforo , Nitrogênio/análise
5.
Toxics ; 11(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977026

RESUMO

Soil acidification in tea plantations leads to an excessive heavy metal content in tea, decreasing its yield and quality. How to apply shellfish and organic fertilizers to improve soil and ensure the safe production of tea is still not clear. A two-year field experiment was conducted in tea plantations in which the soil was characterized by a pH of 4.16 and concentrations of lead (Pb) (85.28 mg/kg) and cadmium (Cd) (0.43 mg/kg) exceeding the standard. We used shellfish amendments (750, 1500, 2250 kg/ha) and organic fertilizers (3750, 7500 kg/ha) to amend the soils. The experimental results showed that compared with the treatment without any amendment (CK), the soil pH increased by 0.46 on average; the soil available nitrogen, phosphorus, and potassium contents increased by 21.68%, 19.01%, and 17.51% respectively; and the soil available Pb, Cd, Cr, and As contents decreased by 24.64%, 24.36%, 20.83%, and 26.39%, respectively. In comparison to CK, the average yield of tea also increased by 90.94 kg/ha; tea polyphenols, free amino acids, caffeine, and water extract increased by 9.17%, 15.71%, 7.54%, and 5.27%, respectively; and the contents of Pb, Cd, As, and Cr in the tea decreased significantly (p < 0.05) by 29.44-61.38%, 21.43-61.38%, 10.43-25.22%, and 10.00-33.33%, respectively. The greatest effects on all parameters occurred with the largest amendment of both shellfish (2250 kg/ha) and organic fertilizer (7500 kg/ha) combined. This finding suggests that the optimized amendment of shellfish could be used as a technical measure to improve the health quality of both soil and tea in acidified tea plantations in the future.

6.
Toxics ; 11(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36977030

RESUMO

The identification of the source of heavy metal pollution and its quantification are the prerequisite of soil pollution control. The APCS-MLR, UNMIX and PMF models were employed to apportion pollution sources of Cu, Zn, Pb, Cd, Cr and Ni of the farmland soil in the vicinity of an abandoned iron and steel plant. The sources, contribution rates and applicability of the models were evaluated. The potential ecological risk index revealed greatest ecological risk from Cd. The results of source apportionment illustrated that the APCS-MLR and UNMIX models could verify each other for accurate allocation of pollution sources. The industrial sources were the main sources of pollution (32.41~38.42%), followed by agricultural sources (29.35~31.65%) and traffic emission sources (21.03~21.51%); and the smallest proportion was from natural sources of pollution (11.2~14.42%). The PMF model was easily affected by outliers and its fitting degree was not ideal, leading to be unable to get more accurate results of source analysis. The combination of multiple models could effectively improve the accuracy of pollution source analysis of soil heavy metals. These results provide some scientific basis for further remediation of heavy metal pollution in farmland soil.

7.
J Environ Manage ; 325(Pt B): 116605, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347187

RESUMO

Fertilization changes the soil organic carbon (SOC) composition, affecting the carbon cycle of paddy soil. Understanding the mechanisms of physical fraction and chemical composition of SOC responding to fertilization can help regulate the nutrient release and carbon sequestration. However, it is unclear whether these changes in SOC composition to fertilization are consistent and how these are regulated by biotic and abiotic properties. Therefore, a positioning experiment in a rice field was conducted with a total of nine treatments. Chemical fertilizers (0, 337.5, and 675 kg ha-1; C0, C50, and C100, respectively) and fungal residue (0, 10,000, and 20,000 kg ha-1; F0, F50, and F100, respectively) were applied to evaluated (i) changes in the physical fraction and chemical composition of SOC, (ii) changes in soil properties, microbial biomass and community, and (iii) establish relationships among soil properties, microbial community, microbial biomass, and SOC composition. Our results showed that the application of fungal residue exhibited more significant effects on SOC physical fractions than those with the chemical fertilizers. Furthermore, the chemical composition of SOC was more respond to the application of chemical fertilizers than fungal residue. The partial least squares path model indicated that soil properties mainly affected the mineral-associated organic carbon (MAOC) by microbial biomass. In addition, bacterial diversity played an important role in improving the accumulation of MAOC. The SOC chemical composition was mediated by fungal community composition and bacterial diversity. In conclusion, fungal residue application affected SOC physical fraction by increasing soil properties, microbial biomass, and bacterial diversity. Chemical fertilizers application mainly mediated the chemical composition of SOC by altering fungal community composition and decreasing bacterial diversity.


Assuntos
Oryza , Solo , Solo/química , Carbono/química , Fertilizantes/análise , Agricultura/métodos , Microbiologia do Solo , Oryza/química , Minerais , Fertilização
8.
Sci Rep ; 12(1): 21929, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535975

RESUMO

Cadmium (Cd) has seriously threatened the safe production of food crops. Passivator amendments are commonly used to control the soil Cd availability. Yet, few studies are tested to explore the effect of the combination of various amendments. Here, we investigated the effects of different amendments (2% rice husk biochar, 2% limestone, and 1% rice husk biochar + 1% limestone) on the growth and Cd accumulation of wheat in pot and field experiments. The results showed that under the low soil Cd condition, the maximum increase of soil pH (1.83) was found in the limestone treatment compared to CK in pot experiment. Compared with the CK, the treatment of rice husk biochar decreased soil Cd availability and grain Cd content by about 25% and 31.2%, respectively. In contrast, under high soil Cd condition, the highest soil pH was observed in limestone, while the lowest soil Cd availability and grain Cd concentrations were found in rice husk biochar treatment. In the field experiment, the treatment of 1% rice husk biochar + 1% limestone caused a significant increase of soil pH by about 28.2%, whereas the treatment of 2% rice husk biochar reduced soil Cd availability and grain Cd content by about 38.9% and 38.5% compared to the CK. Therefore, rice husk biochar showed great potential to reduce Cd availability and ensure safe food production.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Triticum , Carbonato de Cálcio/análise , Poluentes do Solo/análise , Grão Comestível/química , Solo/química , Carvão Vegetal/química
9.
Toxics ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736899

RESUMO

Hypoxic environments have an adverse effect on the growth and development of P. praecox, and this is accompanied by the production of reducing substances such as Fe and Mn. In this study, the effect of hypoxic stress and Mn concentrations on leaf chlorophyll contents, root morphology, root activity, element absorption, antioxidant enzymes, and respiratory enzyme system of P. praecox were evaluated in a hydroponics environment. The results revealed that application of Mn2+ during hypoxic stress enhanced leaf chlorophyll contents and boosted up the indexes of the root system. The root activity of P. praecox was reduced with stresses of hypoxia. The treatment of Mn2+ initially improved and then decreased the root activity of P. praecox, and attained its maximum with application of 300 µmol/L Mn2+ compared with control. The indexes of antioxidant enzymes of P. praecox were higher than that of 8 mg/L oxygen concentrations except for variable superoxide dismutase (SOD) in the treatment of 300 µmol/L Mn2+ with hypoxia stress. The application of Mn had inhibited the absorption of mineral elements in P. praecox. The activities of pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactic dehydrogenase (LDH) were initially improved and then diminished with hypoxia stress. It is concluded that hypoxia is a key factor affecting the growth and degradation of P. praecox, while combining it with the increase of Mn concentration enhances the damage to Phyllostachys pubescens. Our research is helpful for the sustainable management and scientific fertilization management of Phyllostachys praecox.

10.
Life (Basel) ; 12(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35743839

RESUMO

Hypoxia affects plant growth, hormone content, various enzyme activities, cell structure, peroxide production, and metabolic level, therefore reducing crop yield. This study assessed the physiological, biochemical, and metabolic characteristics of Phyllostachys praecox. Results revealed that hypoxia stress treatment significantly inhibited plant growth. Leaf chlorophyll contents was initially improved and then reduced with plant growth time. Under hypoxia stress, the root activity significantly was reduced, leading to the decrease in the nutrient absorption and transport. Yet, with low oxygen concentration, the contents of ethanol, acetaldehyde, and lactic acid were improved. With hypoxia stress, phospholipids and amino acids were the main metabolites of Phyllostachys praecox. Glycosphospholipid metabolism is the key pathway in responding to hypoxia stress significantly (p < 0.05), and lysophosphatidlycholine (lysoPC) and phosphatidylcholines (PC) in the metabolites of this metabolic pathway were significantly enhanced. Our study reveals the mechanism of Phyllostachys praecox cell membrane responding to hypoxia stress based on molecular level. This is conducive to finding targeted solutions to improve the productivity of Phyllostachys praecox to better optimize a mulching approach in the bamboo forest.

11.
Environ Pollut ; 304: 119232, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364188

RESUMO

Combining biochar with irrigation management to alter the microbial community is a sustainable method for remediating soils contaminated by heavy metals. However, studies on how these treatments promote Cr(VI) reduction are limited, and the corresponding microbial mechanisms are unclear. Therefore, we conducted a pot experiment to explore the responses of soil microbial communities to combined biochar amendment and irrigation management strategies and their involvement in Cr transformation in paddy soils. Six treatments were established using varying concentrations of biochar (0, 1, and 2% [w/w]) combined with two irrigation management strategies (continuous flooding [CF] and dry-wet alternation [DWA]). The results showed that the combined biochar addition and irrigation management strategy significantly altered soil pH, redox potential, organic matter content, and Fe(II) and sulfide concentrations. In addition, the Cr(VI) concentration under CF irrigation management was conspicuously lower (48.2-54.4%) than that under DWA irrigation management. Biochar amendment also resulted in a substantial reduction (8.8-27.4%) in Cr(VI) concentration. Moreover, the changes in soil physicochemical properties remarkably affected the soil microbial community. The microbial diversity and abundance significantly increased with biochar amendment. Furthermore, the combined biochar amendment and CF strategy stimulated the growth of Geobacter- and Anaeromyxobacter-related Fe(III)-reducing bacteria, Gallionella-related Fe(II)-oxidizing bacteria, and Desulfovibro- and Clostridium-related sulfate-reducing bacteria, which simultaneously facilitated the generation of Fe(II) and sulfide, thereby enhancing Cr(VI) reduction. Consequently, our results suggest that the effectively increased abundance of Fe-reducing/oxidizing bacteria and sulfate-reducing bacteria via combined CF irrigation management and biochar addition may be a key factor in reducing Cr(VI) in paddy soil. The keystone genera responsible for Cr(VI) reduction were Geobacter, Anaeromyxobacter, Gallionella, Desulfovibro, and Clostridium. This study provides novel insights into the coupling mechanism of the Fe/S/Cr transformation mediated by Fe-reducing/oxidizing bacteria and sulfate-reducing bacteria.


Assuntos
Geobacter , Microbiota , Oryza , Poluentes do Solo , Bactérias , Carvão Vegetal/química , Compostos Férricos , Compostos Ferrosos , Oxirredução , Solo/química , Poluentes do Solo/análise , Sulfatos , Sulfetos
12.
Huan Jing Ke Xue ; 43(3): 1584-1595, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258223

RESUMO

A Fe-Mn oxide-microbe combined biochar (FM-DB) was prepared to simultaneously remove Cd(Ⅱ) and As(Ⅲ) contamination in an aqueous system. In the FM-DB, the best ratio of Fe-Mn oxide (FMBO) and carya cathayensis shell biochar (CCSB) was 3%+3%. The material had good acid resistance, mechanical strength, and mass transfer performance, and the maximum removal rates for Cd(Ⅱ) and As(Ⅲ) in the binary system were 77.29% and 99.94%, respectively. Characterization confirmed that the FM-DB was successfully prepared and had a rich functional group structure. The single-factor adsorption test results for Cd(Ⅱ) and As(Ⅲ) showed that the composite material had a certain adsorption capacity affected by initial pH, equilibration time, and initial concentration for Cd(Ⅱ) and As(Ⅲ) under different conditions. The adsorption isotherm and kinetic data indicated the adsorption equilibrium time for Cd(Ⅱ) and As(Ⅲ) was 3.5 h and 8 h, and the maximum capacity was 59.27 mg·g-1and 84.73 mg·g-1, respectively. The adsorption of Cd(Ⅱ) and As(Ⅲ) was mainly affected by the electron exchange, electron sharing, and complexation on the surface of the material. The whole adsorption process was a combination of single-layer adsorption and multi-layer adsorption on an uneven surface. The adsorption process was a multi-step process, including outer surface diffusion and inner particle diffusion. In addition, comparing the removal rate of composite materials in the single-component system and the binary system, a mutual promotion of adsorption between Cd(Ⅱ) and As(Ⅲ) was found under the binary system. In conclusion, oxide-microbe combined biochar could be an efficient adsorption material and was suitable for the remediation of aqueous system pollution caused by Cd(Ⅱ) and As(Ⅲ).


Assuntos
Óxidos , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Carvão Vegetal/química , Cinética , Óxidos/química , Poluentes Químicos da Água/análise
13.
Huan Jing Ke Xue ; 42(7): 3535-3548, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212680

RESUMO

Two iron-based materials, Fe-Ca composite (FeCa) and Fe-Mn binary oxide (FMBO), were applied to immobilize As, Pb, and Cd in heavy metal contaminated paddy soils. Seven kinds of paddy soil (tidal soil) contaminated by arsenic, lead and cadmium were collected from Shangyu, Shaoxing (SY), Foshan, Guangdong (FS), Shaoguan, Guangdong (SG), LiuYang, Hunan (LY), Ganzhou, Jiangxi (GZ), Dushan, Guizhou (DS), and Ma'anshan, Anhui (MAS). The effects of iron-based materials on the dynamic changes of As, Pb, and Cd concentration in soil solution, the stabilization efficacy of available As, Pb, and Cd in soil, and the effects of soil types and properties on stabilization efficacy were studied through soil incubation experiment. The results showed that the content of soil dissolved As, Pb, and Cd were lower in iron-based material treatments than in control throughout the incubation. The addition of two iron-based materials significantly reduced the availability of Cd, Pb, and As. Moreover, the stabilization efficiency of FeCa for As was higher than FMBO, but no significant difference was found in the stabilization efficiency of Pb and Cd between two materials. The stabilization efficiency of As, Pb, and Cd in FeCa treatments could be ordered as GZ > SG > DS and MAS; FS>SY, LY, and SG>MAS; SY, GZ, and DS>MAS, respectively. While the stabilization efficiency for As, Pb, and Cd in FMBO could be ordered as SY, LY, and GZ > DS > FS; FS > GZ > SY; DS > LY > MAS, respectively. In addition, the statistical results showed that the stabilization efficiencies of various soils under the treatment of iron-based materials were significantly correlated with sand content (negatively correlated for As), soil pH (positively correlated for Pb), and clay content (negatively correlated for Cd). In conclusion, the two iron-based materials evaluated in this study may be effective stabilization agents for remediating different types of arsenic-, lead-, and cadmium-contaminated soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/análise , Ferro , Chumbo , Solo , Poluentes do Solo/análise
14.
Chemosphere ; 276: 130168, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743427

RESUMO

The field trial was conducted to investigate remediation effects of two alkaline fertilizers and three water management techniques on Cd contaminated paddy soil. The results revealed downward trend of soil pH and EC during growth period of rice. The treatment of organic fertilizer has indicated high pH and organic matter than treatment of calcium magnesium phosphate fertilizer. The integrated effect of organic fertilizer and continuous flooding (COF) has significantly (p < 0.05) reduced soil Eh to -180 mv at booting stage. The exchangeable Cd of soil decreased with growth of rice in all treatments. The continuous flooding has showed lowest content of soil exchangeable Cd at every stage of rice growth than other treatments. The organic fertilizer, calcium magnesium and phosphorus have promoted growth of rice. The treatments of continuous flooding were most effective in reducing Cd content in rice grain by 12.6-51.9%. The treatments of continuous flooding have lowest TFhusk-rice, and TFshoot-husk. The BCF of continuous flooding was 0.13, 0.35 and 0.13. According to Pearson correlation coefficients, soil exchangeable Cd concentration has significantly (P < 0.05) negative correlation with soil pH and EC, but has significantly (P < 0.05) positive correlation with soil Eh. The Cd concentration of rice grain has significantly (P < 0.05) positive correlation with Cd of leaf, and negative correlation with Cd of husk. It is concluded that organic fertilizer combined with continuous flooding was most effective management strategy for Cd remediation in paddy soil.


Assuntos
Oryza , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Fertilização , Fertilizantes/análise , Solo , Poluentes do Solo/análise , Água
15.
Ecotoxicol Environ Saf ; 211: 111902, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493717

RESUMO

Application of activating agents can significantly improve efficiency of plants for remediation of soils contaminated by heavy metals, however, damage to soil and plants limits application of traditional activating agents. The aim of our experiments is to select an efficient,green and low-cost activating agent to improve efficiency of plant extraction technology. In this study, contaminated soil was remediated by Sedum alfredii. The effects of two plant extracts (i.e., Oxalis corniculata,OX and Medicago sativaextract, ME) in addition to citric acid (CA) were studied in oscillatory activation experiment and pot experiment. The oscillation activation experiment revealed that extraction quantity of heavy metals in the soil was enhanced significantly with concentration of plant extract. The extraction quantity of Zn from 100% OX extract and ME extract were significantly higher than 10 mmol/L CA (54.04% and 33.09%, respectively). The 10 mmol/L CA has best extraction efficiency for Cd, up to 41.36 µg/kg, which is significantly higher than CK (control) (p < 0.05). The pot experiment exhibited that application of CA has significantly reduced soil pH and organic matter content by 8.63% and 28.21%, respectively, however the two extracts have no significant effect on soil properties. The study indicated that application of CA has negative effects on root morphological parameters and chlorophyll fluorescence parameters of Sedum alfredii.The addition of extracts of two plants have not caused any harm to Sedum alfredii. The application of three activating agents was beneficial for purification of Cd and Zn in soils, and its repairing efficiency was improved by 3.92, 3.37, 3.33 times and 0.44, 0.20, 0.86 times, respectively. The combination of plant extracts and hyperaccumulators can effectively remove heavy metals from contaminated soils, which provided a theoretical basis for mitigation of pollution in soils.


Assuntos
Biodegradação Ambiental , Ácido Cítrico , Extratos Vegetais , Poluentes do Solo , Cádmio/análise , Ácido Cítrico/farmacologia , Metais Pesados/análise , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Sedum/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
16.
Environ Sci Pollut Res Int ; 28(14): 17405-17416, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394394

RESUMO

Wheat is the second most important food crop worldwide, which is prone to accumulate cadmium (Cd). Accumulation of Cd in wheat grains depends not only on wheat genotype, but also largely on the availability of soil Cd and its internal distribution. In this study, several experiments were used to achieve low-grain Cd content: a field trial for wheat genotype screening, a soil incubation experiment to test passivation effect of bamboo biochar on soil Cd, and a soil pot experiment to examine bamboo biochar effect on wheat grain accumulation. The results showed that of the 243 wheat cultivars tested, the variation range of grain Cd content was 0.365-1.243 mg/kg, in a field with soil Cd of 3 mg/kg. The application of bamboo biochar reduced soil Cd availability, among which 5.0% bamboo biochar treatment had the greatest effect. The content of available Cd in soil treated with 5.0% bamboo biochar decreased by 0.32 mg/kg compared with the control in a 120-day incubation experiment. Effect of bamboo biochar (0, 0.1%, 1.0%, and 5.0%) on reducing grain Cd content in two wheat genotypes (Mianyou-1 and 1279-9) was investigated. The application of bamboo biochar decreased Cd uptake by plants, while distribution of Cd in different wheat plant parts was more controlled by the plant genetic characteristics. Compared with the control, Cd content in roots, straw, and grains was decreased by 34.06% (P < 0.05), 21.57%, and 23.33%, respectively, in low-grain Cd wheat cultivar 1279-9 by 5% bamboo biochar application. Overall, the combination of low-grain Cd accumulation wheat and bamboo biochar may be a feasible strategy to lessen grain Cd accumulation in Cd-contaminated soils.


Assuntos
Sasa , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Grão Comestível/química , Genótipo , Solo , Poluentes do Solo/análise , Triticum/genética
17.
Bull Environ Contam Toxicol ; 104(4): 484-488, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100059

RESUMO

Biochar is an important material for remediation of contaminated soils, however, different biochars have variable effects on bioavailability of heavy metals. This experiment revealed that peanut shell biochar (PSB) has highest reduction of 78% concentration of Pb in plant roots. The maize straw biochar (MSB) has significantly decreased Zn and Cd concentration (mg/kg dry weight) in Chinese cabbage than other treatments of biochars. The plants of Chinese cabbage have exhibited an efficient transport capability for Zn and Cd. The biochars have reduced exchangeable form of Cd/Zn, enhanced residual heavy metals, and consequently diminished accumulation of heavy metals in plants. The straw block biochar (SBB), PSB and MSB have efficiently relieved the stresses of heavy metals in plants.


Assuntos
Carvão Vegetal/química , Metais Pesados/análise , Oryza/metabolismo , Poluentes do Solo/análise , Solo/química , Arachis/química , Disponibilidade Biológica , Metais Pesados/metabolismo , Nozes/química , Oryza/crescimento & desenvolvimento , Raízes de Plantas/química , Poluentes do Solo/metabolismo , Zea mays/química
18.
Environ Technol ; 41(25): 3329-3337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31084268

RESUMO

The biochars are efficient adsorbent of heavy metals. However, the type of biochar species determines the effectiveness of biochars for immobilization of heavy metals. In this experiment, we mixed different biochars in variable mass ratios and evaluated their effects on plant growth and bioavailability of heavy metals. The results revealed that amendment of single and mixed biochars has increased pH, EC, available P and K of soil. The straw block biochar with maize straw biochar at a mass ratio of 1:2 (SDM) has significantly decreased Pb and Cu concentration in soil. The straw block biochar with maize straw biochar at a mass ratio of 2:1 (DSM) has highly increased the dry biomass of Chinese cabbage than single biochar or control, whereas plant physiological properties were mostly not affected. It is concluded that peanut shell biochar with maize straw biochar at a mass ratio of 2:1 (DPS) and DSM have significantly decreased Pb, Zn and Cu concentration in plants. The single peanut shell biochar has significantly decreased the plant Cd concentration. The ability of transport of heavy metals in Chinese cabbage was in the sequence of Cd > Zn > Cu > Pb. The mixing of different biochars has decreased the concentration of heavy metals in plants more effectively than single biochar.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Disponibilidade Biológica , Carvão Vegetal , Metais Pesados/análise , Solo , Poluentes do Solo/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-31337031

RESUMO

The potentially toxic trace elements (PTEs) transfer characteristics in the soil-rice system plays an important role in soil quality management, and it can be used to guide the safe rice production. We collected soil and rice samples from three typical rice production areas (Nanxun, Shengzhou, Wenling in northern, central, and southern parts of Zhejiang Province, China). The controlling factors of PTEs' transfer were studied for Hybrid rice and Japonica rice. The results indicated that the pH, organic matter (OM), and electrical conductivity (EC) values of Shengzhou were all lower than that of the other two production areas (Nanxun and Wenling). The concentrations of PTEs in the soils of Wenling were significantly higher than that in the other two areas, while the concentrations of PTEs in the rice of Shengzhou were significantly higher than that of Wenling and Nanxun (p < 0.05). The enrichment index (EI) of PTEs were also different in the three production areas. The EIs of Cd and Zn were higher than that of Cu and Ni in the three production areas, and the EIs in Shengzhou were significantly higher than that of other two areas (p < 0.05). The soil physico-chemical properties and PTEs' fractions both played important roles in PTEs transfer in the soil-rice system. The log-linear model of EI for PTEs can predict the availability of PTEs in the soil-rice system under practical production areas. The accuracy of the model prediction of EI for Japonica rice was better than that for the Hybrid rice. The prediction model of Ni was better than that of other PTEs for both rices.


Assuntos
Monitoramento Ambiental/métodos , Oryza/química , Poluentes do Solo/toxicidade , Oligoelementos/toxicidade , China , Metais Pesados/análise , Modelos Teóricos , Solo/química , Poluentes do Solo/análise , Espectrofotometria Atômica , Oligoelementos/análise
20.
Environ Sci Pollut Res Int ; 26(23): 23305, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240641

RESUMO

The article Effect of the combined application of fungal residue and chemical fertilizers on the mineralization of soil organic carbon in paddy fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA