RESUMO
We introduce a technique for evaluating the changing connectivity of a vector field whose integral curves (field lines) form tangled tubular bundles. Applications of such fields include magnetic flux ropes, relativistic plasma jets, stirred two-dimensional fluids, superfluid vortices, and polymer networks. The technique is based on maps of the field line winding-the average entanglement of a given field line with all other field lines. Previously this had been developed for divergence-free vector fields. By extending some previous theoretical results, we show how it can be applied to any vector field that forms a tubular bundle. We demonstrate the efficacy of this technique on data from laboratory plasma experiments with two interacting magnetic flux ropes. Performed in the UCLA Large Plasma Device, the plasma's magnetic field structure is too complex to identify a single dominant current sheet as an expected site of magnetic reconnection. Previously, this complex structure had restricted the ability to analyze the evolving magnetic connectivity, but this is no such restriction to our method. We demonstrate that the plasma establishes a periodically oscillating cycle of magnetic field structure variation which, while triggered by an ideal instability, is dominated by magnetic reconnection. This reconnection leads to periodically varying coherence of a merged central flux rope, a conclusion supported by analysis of the writhing structure of the magnetic field.
RESUMO
Seven different models are applied to the same problem of simulating the Sun's coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.