Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2309472120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060560

RESUMO

Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure-activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1's limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.


Assuntos
Nanopartículas , Vacinas de mRNA , Músculos , Lipossomos , Transfecção
2.
Pediatr Surg Int ; 39(1): 211, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268798

RESUMO

PURPOSE: Necrotizing enterocolitis (NEC), an inflammatory intestinal disease common in premature infants, has been associated with the development of lung damage. Toll-like receptor 4 has been shown to regulate inflammation in the NEC lungs, however, other important inflammatory mechanisms have not been thoroughly investigated. In addition, we reported that milk-derived exosomes were able to attenuate intestinal injury and inflammation in experimental NEC. This study aims to (i) investigate the role of the NLRP3 inflammasome and NF-κB pathway in regulating lung damage during experimental NEC; and (ii) evaluate the therapeutic potential of bovine milk exosomes in reducing lung inflammation and injury during NEC. METHODS: NEC was induced by gavage feeding of hyperosmolar formula, hypoxia, and lipopolysaccharide administration in neonatal mice from postnatal days 5-9. Exosomes were obtained by ultracentrifugation of bovine milk and administered during each formula feed. RESULTS: The lung of NEC pups showed increased inflammation, tissue damage, NLRP3 inflammasome expression, and NF-κB pathway activation, which were attenuated upon exosome administration. CONCLUSION: Our findings suggest that the lung undergoes significant inflammation and injury following experimental NEC which are attenuated by bovine milk-derived exosomes. This emphasizes the therapeutic potential of exosomes not just on the intestine but also on the lung.


Assuntos
Enterocolite Necrosante , Exossomos , Doenças do Recém-Nascido , Recém-Nascido , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Leite/metabolismo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Enterocolite Necrosante/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Animais Recém-Nascidos , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
3.
ACS Appl Mater Interfaces ; 15(21): 25324-25338, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192117

RESUMO

Although nanoparticle-based chemotherapeutic strategies have gained in popularity, the efficacy of such therapies is still limited in part due to the different nanoparticle sizes needed to best accommodate different parts of the drug delivery pathway. Herein, we describe a nanogel-based nanoassembly based on the entrapment of ultrasmall starch nanoparticles (size 10-40 nm) within disulfide-crosslinked chondroitin sulfate-based nanogels (size 150-250 nm) to address this challenge. Upon exposure of the nanoassembly to the reductive tumor microenvironment, the chondroitin sulfate-based nanogel can degrade to release the doxorubicin-loaded starch nanoparticles in the tumor to facilitate improved intratumoral penetration. CT26 colon carcinoma spheroids could be efficiently penetrated by the nanoassembly (resulting in 1 order of magnitude higher DOX-derived fluorescence inside the spheroid relative to free DOX), while in vivo experiments showed that doxorubicin-loaded nanoassemblies reduced tumor sizes by 6× relative to saline controls and 2× relative to free DOX after 21 days. Together, these data suggest that nanogel-based nanoassemblies are a viable option for improving the efficacy and safety of nanoparticle-based drug delivery vehicles treating cancer.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Nanogéis , Dissulfetos , Sulfatos de Condroitina , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA