Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 45(1): 42-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24670042

RESUMO

EglA, a ß-1,4-glucanase isolated from the ruminal fungus Piromyces rhizinflata, shows promise in a wide range of industrial applications because of its broad substrate specificity. In this study, EglA was immobilized on different supporting materials including poly(dimethylsiloxane) (PDMS), Si wafer, textured Si wafer, and indium tin oxide-coated (ITO-coated) glass. The binding abilities of PDMS and Si wafer toward EglA were significantly higher than those of the other supporting materials. The optimized temperature and pH conditions for EglA immobilized on PDMS and on Si wafer were further determined by a response surface methodology (RSM) combined with a central composite design (CCD). The results indicated that the optimum pH and temperature values as well as the specific ß-glucanase activity of EglA on PDMS were higher than those of free-form EglA. In addition, EglA immobilized on PDMS could be reused up to six times with detectable enzyme activity, while the enzyme activity of Eg1A on Si wafer was undetectable after three cycles of enzyme reaction. The results demonstrate that PDMS is an attractive supporting material for EglA immobilization and could be developed into an enzyme chip or enzyme tube for potential industrial applications.


Assuntos
Celulase/química , Celulase/metabolismo , Dimetilpolisiloxanos/química , Enzimas Imobilizadas/metabolismo , Piromyces/enzimologia , Celulase/genética , Celulase/isolamento & purificação , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Análise de Regressão , Silício/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA