Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(3): e36547, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241545

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the primary cause of vision impairment in older adults, especially in developed countries. While many articles on AMD exist in the literature, none specifically delve into the trends based on document categories. While bibliometric studies typically use dual-map overlays to highlight new trends, these can become congested and unclear with standard formats (e.g., in CiteSpace software). In this study, we introduce a unique triple-map Sankey diagram (TMSD) to assess the evolution of AMD research. Our objective is to understand the nuances of AMD articles and show the effectiveness of TMSD in determining whether AMD research trends have shifted over the past decade. METHODS: We collected 7465 articles and review pieces related to AMD written by ophthalmologists from the Web of Science core collection, accumulating article metadata from 2014 onward. To delve into the characteristics of these AMD articles, we employed various visualization methods, with a special focus on TMSD to track research evolution. We adopted the descriptive, diagnostic, predictive, and prescriptive analytics (DDPP) model, complemented by the follower-leading clustering algorithm (FLCA) for clustering analysis. This synergistic approach proved efficient in identifying and showcasing research focal points and budding trends using network charts within the DDPP framework. RESULTS: Our findings indicate that: in countries, institutes, years, authors, and journals, the dominant entities were the United States, the University of Bonn in Germany, the year 2021, Dr Jae Hui Kim from South Korea, and the journal "Retina"; in accordance with the TMSD, AMD research trends have not changed significantly since 2014, as the top 4 categories for 3 citing, active, and cited articles have not changed, in sequence (Ophthalmology, Science & Technology - Other Topics, General & Internal Medicine, Pharmacology & Pharmacy). CONCLUSION: The introduced TMSD, which incorporates the FLCA algorithm and features in 3 columns-cited, active, and citing research categories-offers readers clearer insights into research developments compared to the traditional dual-map overlays from CiteSpace software. Such tools are especially valuable for streamlining the visualization of the intricate data often seen in bibliometric studies.


Assuntos
Degeneração Macular , Humanos , Idoso , Retina , Academias e Institutos , Algoritmos , Bibliometria
2.
Medicine (Baltimore) ; 101(37): e30648, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36123944

RESUMO

BACKGROUND: An important factor in understanding the spread of COVID-19 is the case fatality rate (CFR) for each county. However, many of research reported CFRs on total confirmed cases (TCCs) rather than per 100,000 people. The disparate definitions of CFR in COVID-19 result in inconsistent results. It remains uncertain whether the incident rate and CFR can be compared to identify countries affected by COVID-19 that are under (or out of) control. This study aims to develop a diagram for dispersing TCC and CFR on a population of 100,000 (namely, TCC100 and CFR100) using the Kano model, to examine selected countries/regions that have successfully implemented preventative measures to keep COVID-19 under control, and to design an app displaying TCC100 and CFR100 for all infected countries/regions. METHODS: Data regarding confirmed cases and deaths of COVID-19 in countries/regions were downloaded daily from the GitHub website. For each country/region, 3 values (TCC100, CFR100, and CFR) were calculated and displayed on the Kano diagram. The lower TCC100 and CFR values indicated that the COVID-19 situation was more under control. The app was developed to display both CFR100/CFR against TCC100 on Google Maps. RESULTS: Based on 286 countries/regions, the correlation coefficient (CC) between TCC100 and CFR100 was 0.51 (t = 9.76) in comparison to TCC100 and CFR with CC = 0.02 (t = 0.3). As a result of the traditional scatter plot using CFR and TCC100, Andorra was found to have the highest CFR100 (=6.62%), TCC100 (=935.74), and CFR (=5.1%), but lower CFR than New York (CFR = 7.4%) and the UK (CFR = 13.5%). There were 3 representative countries/regions that were compared: Taiwan [TCC100 (=1.65), CFR100 (=2.17), CFR (=1%)], South Korea [TCC100 (=20.34), CFR100 (=39.8), CFR (=2%), and Vietnam [TCC100 (=0.26), CFR100 (=0), CFR (=0%)]. CONCLUSION: A Kano diagram was drawn to compare TCC100 against CFT (or CFR100) to gain a better understanding of COVID-19. There is a strong association between a higher TCC100 value and a higher CFR100 value. A dashboard was developed to display both CFR100/CFR against TCC100 for countries/regions.


Assuntos
COVID-19 , Humanos , New York , Nigéria , República da Coreia , Taiwan
5.
Medicine (Baltimore) ; 101(52): e32392, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36596033

RESUMO

BACKGROUND: We selected authors from mainland China, Hong Kong, and Taiwan (CHT) to examine citation trends on articles and keywords. The existence of suitable temporal bar graphs (TBGs) for displaying citation trends is unknown. It is necessary to enhance the traditional TBGs to provide readers with more information about the citation trend. The purpose of this study was to propose an advanced TBG that can be applied to understand the most worth-reading articles by ophthalmology authors in the CHT. METHODS: Using the search engine of the Web of Science core collection, we conducted bibliometric analyses to examine the article citation trends of ophthalmology authors in CHT since 2013. A total of 6695 metadata was collected from articles and review articles. Using radar plots, the Y-index, and the combining the Y-index with the CJAL scores (CJAL) scores, we could determine the dominance of publications by year, region, institute, journal, department, and author. A choropleth map, a dot plot, and a 4-quadrant radar plot were used to visualize the results. A TBG was designed and provided for readers to display citation trends on articles and keywords. RESULTS: We found that the majority of publications were published in 2017 (2275), Shanghai city (935), Sun Yat-Sen University (China) (689), the international journal Ophthalmology (1399), the Department of Ophthalmology (3035), and the author Peizeng Yang (Chongqing) (65); the highest CAJL scores were also from Guangdong (2767.22), Sun Yat-Sen University (China) (2147.35), and the Ophthalmology Department (7130.96); the author Peizeng Yang (Chongqing) (170.16) had the highest CAJL; and the enhanced TBG features maximum counts and recent growth trends that are not included in traditional TBGs. CONCLUSION: Using the Y-index and the CJAL score compared with research achievements of ophthalmology authors in CHT, a 4-quadrant radar plot was provided. The enhanced TBGs and the CJAL scores are recommended for future bibliographical studies.


Assuntos
Bibliometria , Fator de Impacto de Revistas , Humanos , Hong Kong , China , Taiwan
6.
Medicine (Baltimore) ; 100(50): e28134, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918666

RESUMO

BACKGROUND: The COVID-19 pandemic caused >0.228 billion infected cases as of September 18, 2021, implying an exponential growth for infection worldwide. Many mathematical models have been proposed to predict the future cumulative number of infected cases (CNICs). Nevertheless, none compared their prediction accuracies in models. In this work, we compared mathematical models recently published in scholarly journals and designed online dashboards that present actual information about COVID-19. METHODS: All CNICs were downloaded from GitHub. Comparison of model R2 was made in 3 models based on quadratic equation (QE), modified QE (OE-m), and item response theory (IRT) using paired-t test and analysis of variance (ANOVA). The Kano diagram was applied to display the association and the difference in model R2 on a dashboard. RESULTS: We observed that the correlation coefficient was 0.48 (t = 9.87, n = 265) between QE and IRT models based on R2 when modeling CNICs in a short run (dated from January 1 to February 16, 2021). A significant difference in R2 was found (P < .001, F = 53.32) in mean R2 of 0.98, 0.92, and 0.84 for IRT, OE-mm, and QE, respectively. The IRT-based COVID-19 model is superior to the counterparts of QE-m and QE in model R2 particularly in a longer period of infected days (i.e., in the entire year in 2020). CONCLUSION: An online dashboard was demonstrated to display the association and difference in prediction accuracy among predictive models. The IRT mathematical model was recommended to make projections about the evolution of CNICs for each county/region in future applications, not just limited to the COVID-19 epidemic.


Assuntos
COVID-19 , Modelos Teóricos , COVID-19/epidemiologia , Previsões , Humanos , Pandemias , SARS-CoV-2
7.
Eur J Med Res ; 26(1): 61, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167582

RESUMO

BACKGROUND: The COVID-19 pandemic occurred and rapidly spread around the world. Some online dashboards have included essential features on a world map. However, only transforming data into visualizations for countries/regions is insufficient for the public need. This study aims to (1) develop an algorithm for classifying countries/regions into four quadrants inn GSM and (2) design an app for a better understanding of the COVID-19 situation. METHODS: We downloaded COVID-19 outbreak numbers daily from the Github website, including 189 countries/regions. A four-quadrant diagram was applied to present the classification of each country/region using Google Maps run on dashboards. A novel presentation scheme was used to identify the most struck entities by observing (1) the multiply infection rate (MIR) and (2) the growth trend in the recent 7 days. Four clusters of the COVID-19 outbreak were dynamically classified. An app based on a dashboard aimed at public understanding of the outbreak types and visualizing of the COVID-19 pandemic with Google Maps run on dashboards. The absolute advantage coefficient (AAC) was used to measure the damage hit by COVID-19 referred to the next two countries severely hit by COVID-19. RESULTS: We found that the two hypotheses were supported: India (i) is in the increasing status as of April 28, 2021; (ii) has a substantially higher ACC(= 0.81 > 0.70), and (iii) has a substantially higher ACC(= 0.66 < 0.70) as of May 17, 2021. CONCLUSION: Four clusters of the COVID-19 outbreak were dynamically classified online on an app making the public understand the outbreak types of COVID-19 pandemic shown on dashboards. The app with GSM and AAC is recommended for researchers in other disease outbreaks, not just limited to COVID-19.


Assuntos
Algoritmos , COVID-19/epidemiologia , COVID-19/transmissão , Saúde Global/estatística & dados numéricos , Modelos Estatísticos , SARS-CoV-2/isolamento & purificação , Humanos , Índia/epidemiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-33923846

RESUMO

The prediction of whether active NBA players can be inducted into the Hall of Fame (HOF) is interesting and important. However, no such research have been published in the literature, particularly using the artificial neural network (ANN) technique. The aim of this study is to build an ANN model with an app for automatic prediction and classification of HOF for NBA players. We downloaded 4728 NBA players' data of career stats and accolades from the website at basketball-reference.com. The training sample was collected from 85 HOF members and 113 retired Non-HOF players based on completed data and a longer career length (≥15 years). Featured variables were taken from the higher correlation coefficients (<0.1) with HOF and significant deviations apart from the two HOF/Non-HOF groups using logistical regression. Two models (i.e., ANN and convolutional neural network, CNN) were compared in model accuracy (e.g., sensitivity, specificity, area under the receiver operating characteristic curve, AUC). An app predicting HOF was then developed involving the model's parameters. We observed that (1) 20 feature variables in the ANN model yielded a higher AUC of 0.93 (95% CI 0.93-0.97) based on the 198-case training sample, (2) the ANN performed better than CNN on the accuracy of AUC (= 0.91, 95% CI 0.87-0.95), and (3) an ready and available app for predicting HOF was successfully developed. The 20-variable ANN model with the 53 parameters estimated by the ANN for improving the accuracy of HOF has been developed. The app can help NBA fans to predict their players likely to be inducted into the HOF and is not just limited to the active NBA players.


Assuntos
Basquetebol , Redes Neurais de Computação , Curva ROC , Aposentadoria
9.
Artigo em Inglês | MEDLINE | ID: mdl-33802247

RESUMO

The COVID-19 pandemic has spread widely around the world. Many mathematical models have been proposed to investigate the inflection point (IP) and the spread pattern of COVID-19. However, no researchers have applied social network analysis (SNA) to cluster their characteristics. We aimed to illustrate the use of SNA to identify the spread clusters of COVID-19. Cumulative numbers of infected cases (CNICs) in countries/regions were downloaded from GitHub. The CNIC patterns were extracted from SNA based on CNICs between countries/regions. The item response model (IRT) was applied to create a general predictive model for each country/region. The IP days were obtained from the IRT model. The location parameters in continents, China, and the United States were compared. The results showed that (1) three clusters (255, n = 51, 130, and 74 in patterns from Eastern Asia and Europe to America) were separated using SNA, (2) China had a shorter mean IP and smaller mean location parameter than other counterparts, and (3) an online dashboard was used to display the clusters along with IP days for each country/region. Spatiotemporal spread patterns can be clustered using SNA and correlation coefficients (CCs). A dashboard with spread clusters and IP days is recommended to epidemiologists and researchers and is not limited to the COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , China/epidemiologia , Europa (Continente) , Ásia Oriental , Humanos , SARS-CoV-2 , Análise de Rede Social , Estados Unidos
10.
Artigo em Inglês | MEDLINE | ID: mdl-33808795

RESUMO

Severe dengue outbreaks (DOs) affect the majority of Asian and Latin American countries. Whether all DOs always occurred in sub-tropical and tropical areas (STTA) has not been verified. We downloaded abstracts by searching keywords "dengue (MeSH Major Topic)" from Pubmed Central since 1950, including three collections: country names in abstracts (CNA), no abstracts (WA), and no country names in abstracts (Non-CNA). Visualizations were created to present the DOs across countries/areas in STTA. The percentages of mentioned country names and authors' countries in STTA were computed on the CNA and Non-CNA bases. The social network analysis was applied to highlight the most cited articles and countries. We found that (1) three collections are 3427 (25.48%), 3137 (23.33%), and 6884 (51.19%) in CNA, WA, and Non-CNA, respectively; (2) the percentages of 94.3% and 79.9% were found in the CNA and Non-CNA groups; (3) the most mentioned country in abstracts were India, Thailand, and Brazil; (4) most authors in the Non-CNA collections were from the United States, Brazil, and China; (5) the most cited article (PMID = 23563266) authored by Bhatt et al. had 2604 citations since 2013. Our findings provide in-depth insights into the DO knowledge. The research approaches are recommended for authors in research on other infectious diseases in the future, not just limited to the DO topic.


Assuntos
Dengue , Clima Tropical , Bibliometria , Brasil , China/epidemiologia , Dengue/epidemiologia , Surtos de Doenças , Humanos , Índia , Tailândia , Estados Unidos
11.
Medicine (Baltimore) ; 100(10): e24749, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33725830

RESUMO

BACKGROUND: During the COVID-19 pandemic, one of the frequently asked questions is which countries (or continents) are severely hit. Aside from using the number of confirmed cases and the fatality to measure the impact caused by COVID-19, few adopted the inflection point (IP) to represent the control capability of COVID-19. How to determine the IP days related to the capability is still unclear. This study aims to (i) build a predictive model based on item response theory (IRT) to determine the IP for countries, and (ii) compare which countries (or continents) are hit most. METHODS: We downloaded COVID-19 outbreak data of the number of confirmed cases in all countries as of October 19, 2020. The IRT-based predictive model was built to determine the pandemic IP for each country. A model building scheme was demonstrated to fit the number of cumulative infected cases. Model parameters were estimated using the Solver add-in tool in Microsoft Excel. The absolute advantage coefficient (AAC) was computed to track the IP at the minimum of incremental points on a given ogive curve. The time-to-event analysis (a.k.a. survival analysis) was performed to compare the difference in IPs among continents using the area under the curve (AUC) and the respective 95% confidence intervals (CIs). An online comparative dashboard was created on Google Maps to present the epidemic prediction for each country. RESULTS: The top 3 countries that were hit severely by COVID-19 were France, Malaysia, and Nepal, with IP days at 263, 262, and 262, respectively. The top 3 continents that were hit most based on IP days were Europe, South America, and North America, with their AUCs and 95% CIs at 0.73 (0.61-0.86), 0.58 (0.31-0.84), and 0.54 (0.44-0.64), respectively. An online time-event result was demonstrated and shown on Google Maps, comparing the IP probabilities across continents. CONCLUSION: An IRT modeling scheme fitting the epidemic data was used to predict the length of IP days. Europe, particularly France, was hit seriously by COVID-19 based on the IP days. The IRT model incorporated with AAC is recommended to determine the pandemic IP.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Modelos Estatísticos , COVID-19/mortalidade , Surtos de Doenças , Humanos , Pandemias , SARS-CoV-2
12.
Medicine (Baltimore) ; 100(10): e25016, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33725882

RESUMO

BACKGROUND: The h-index of a researcher refers to the maximum number h of his/her publications that has at least h citations via the concept of the square area. The x-index is determined by the maximum area of a rectangle under the curve to interpret authors' individual research achievements (IRAs). However, the properties of both metrics have not been compared and discussed before. This study aimed to investigate whether both metrics of h- and x-index are suitable for evaluating IRAs in a short period of years. METHODS: By searching the PubMed database (Pubmed.com), we used the keyword "PLoS One" (journal) and downloaded 50,000 articles published in 2015 and 2016. A total of 146,346 citations were listed in PubMed Central and 27,035 authors(with h-index ≥1) were divided into 3 parts. Correlation coefficients among metrics (ie, AIF, h, g, Ag, and x-index) were examined. The bootstrapping method used for estimating 95% confidence intervals was applied to compare differences in metrics among author groups. The most cited authors and topic burst were visualized by social network analysis. The most prominent countries/areas were highlighted by the x-index and displayed via choropleth maps. RESULTS: Results demonstrated that, first, the h-index had the least relation to other metrics and failed to differentiate authors' IRAs among groups, particularly in a short time period. Second, the top 3 highest x-index for countries were the United States, China, and the UK but with the productivity-oriented feature. Third, the most cited medical subject headings (ie, MeSH terms) were genome, metabolome, and microbiology, and the most cited author was Lori Newman (whose x-index = 13.52, and h = 2) from Switzerland with the article (PMID = 26646541) cited 291 times. The need for the x-index combined with a visual map for displaying authors' IRAs was verified and recommended. CONCLUSIONS: We verified that the h-index failed to differentiate authors' IRAs among author groups in a short time period. The x-index combined with the Kano map is recommended in research for a better understanding of the authors' IRAs in other journals or disciplines, not just limited to the journal of PloS One as we did in this study.


Assuntos
Logro , Bibliometria , Eficiência , Pesquisadores/estatística & dados numéricos , Humanos , Fatores de Tempo
14.
Eur J Med Res ; 26(1): 22, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622416

RESUMO

BACKGROUND: Citation analysis has been increasingly applied to assess the quantity and quality of scientific research in various fields worldwide. However, these analyses on spinal surgery do not provide visualization of results. This study aims (1) to evaluate the worldwide research citations and publications on spinal surgery and (2) to provide visual representations using Kano diagrams onto the research analysis for spinal surgeons and researchers. METHODS: Article abstracts published between 2007 and 2018 were downloaded from PubMed Central (PMC) in 5 journals, including Spine, European Spine Journal, The Spine Journal, Journal of Neurosurgery: Spine, and Journal of Spinal Disorders and Techniques. The article types, affiliated countries, authors, and Medical subject headings (MeSH terms) were analyzed by the number of article citations using x-index. Choropleth maps and Kano diagrams were applied to present these results. The trends of MeSH terms over the years were plotted and analyzed. RESULTS: A total of 18,808 publications were extracted from the PMC database, and 17,245 were affiliated to countries/areas. The 12-year impact factor for the five spine journals is 5.758. We observed that (1) the largest number of articles on spinal surgery was from North America (6417, 37.21%). Spine earns the highest x-index (= 82.96). Comparative Study has the highest x-index (= 66.74) among all article types. (2) The United States performed exceptionally in x-indexes (= 56.86 and 44.5) on both analyses done on the total 18,808 and the top 100 most cited articles, respectively. The most influential author whose x-index reaches 15.11 was Simon Dagenais from the US. (3) The most cited MeSH term with an x-index of 23.05 was surgery based on the top 100 most cited articles. The most cited article (PMID = 18164449) was written by Dagenais and his colleagues in 2008. The most productive author was Michael G. Fehlings, whose x-index and the author's impact factor are 13.57(= √(13.16*14)) and 9.86(= 331.57/33.64), respectively. CONCLUSIONS: There was a rapidly increasing scientific productivity in the field of spinal surgery in the past 12 years. The US has extraordinary contributions to the publications. Furthermore, China and Japan have increasing numbers of publications on spinal surgery. This study with Kano diagrams provides an insight into the research for spinal surgeons and researchers.


Assuntos
Medical Subject Headings , Publicações Periódicas como Assunto , PubMed/normas , Humanos , Estados Unidos
15.
Medicine (Baltimore) ; 99(44): e22885, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126338

RESUMO

BACKGROUND: Publications regarding the 100 top-cited articles in a given discipline are common, but studies reporting the association between article topics and their citations are lacking. Whether or not reviews and original articles have a higher impact factor than case reports is a point for verification in this study. In addition, article topics that can be used for predicting citations have not been analyzed. Thus, this study aims to METHODS:: We searched PubMed Central and downloaded 100 top-cited abstracts in the journal Medicine (Baltimore) since 2011. Four article types and 7 topic categories (denoted by MeSH terms) were extracted from abstracts. Contributors to these 100 top-cited articles were analyzed. Social network analysis and Sankey diagram analysis were performed to identify influential article types and topic categories. MeSH terms were applied to predict the number of article citations. We then examined the prediction power with the correlation coefficients between MeSH weights and article citations. RESULTS: The citation counts for the 100 articles ranged from 24 to 127, with an average of 39.1 citations. The most frequent article types were journal articles (82%) and comparative studies (10%), and the most frequent topics were epidemiology (48%) and blood and immunology (36%). The most productive countries were the United States (24%) and China (23%). The most cited article (PDID = 27258521) with a count of 135 was written by Dr Shang from Shandong Provincial Hospital Affiliated to Shandong University (China) in 2016. MeSH terms were evident in the prediction power of the number of article citations (correlation coefficients  = 0.49, t = 5.62). CONCLUSION: The breakthrough was made by developing dashboards showing the overall concept of the 100 top-cited articles using the Sankey diagram. MeSH terms can be used for predicting article citations. Analyzing the 100 top-cited articles could help future academic pursuits and applications in other academic disciplines.


Assuntos
Bibliometria , Fator de Impacto de Revistas , Medical Subject Headings , Publicações Periódicas como Assunto/tendências , Publicações , Previsões , Humanos , Redes Sociais Online , PubMed , Publicações/classificação , Publicações/normas , Publicações/estatística & dados numéricos
16.
Medicine (Baltimore) ; 99(33): e21552, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32872003

RESUMO

BACKGROUND: Individual researchers' achievements (IRA) are determined by both personal publications and article citations such as Author Impact Factor, h-index, and x-index. Due to those indicators not truly supporting a normal distribution, the traditional t-test and Analysis of variance are not allowed for RA comparison in groups. The objective of this study is to use the bootstrapping method to verify whether hospital physicians have different h-indexes. METHODS: We downloaded 63,266 journal articles with their corresponding citations for 2128 researchers from a Taiwan university website on December 10, 2019. Their IRAs were assessed using the bibliometric h-index. A pyramid plot was used to compare the h-index patterns between institutes. The x-index and the Kano model were found to be complemental to the h-index for identifying the group IRA characteristics and rankings, including colleges and departments in the university study, the School of Medicine, and the Affiliated Hospital. The bootstrapping method was applied with an estimated 95% confidence interval (CI) to distinguish the differences in physicians between the Internal Medicine and Surgery departments. The stronger-than-the-next coefficient (SC) for the highest represents the RA strength. RESULTS: The highest h-indices were found in the College of Engineering, School of Medicine, and the Department of Internal Medicine in groups of colleges (SC = 0.71), all departments (SC = 0.83), the School of Medicine (SC = 0.74), and the Affiliated Hospital (SC = 0.56), respectively. No difference in h-index for hospital physicians was found between departments in Internal Medicine (Mean = 2.14, 95% CI = 1.02,3.26) and Surgery (mean = 2.5, 95%CI = 1.48, 3.52). CONCLUSIONS: The x-index and the Kano models can complement the h-index for identifying group IRA characteristics. The bootstrapping method allows estimation of the sampling distribution for almost any statistic using random sampling methods and gains measures of accuracy (as defined by 95% CI). The finding of no difference in h-index for hospital physicians between departments in Internal Medicine and Surgery requires further investigation in the future.


Assuntos
Logro , Médicos Hospitalares , Publicações/estatística & dados numéricos , Bibliometria , Humanos
17.
JMIR Mhealth Uhealth ; 8(7): e17857, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32735232

RESUMO

BACKGROUND: Mental illness (MI) is common among those who work in health care settings. Whether MI is related to employees' mental status at work is yet to be determined. An MI app is developed and proposed to help employees assess their mental status in the hope of detecting MI at an earlier stage. OBJECTIVE: This study aims to build a model using convolutional neural networks (CNNs) and fit statistics based on 2 aspects of measures and outfit mean square errors for the automatic detection and classification of personal MI at the workplace using the emotional labor and mental health (ELMH) questionnaire, so as to equip the staff in assessing and understanding their own mental status with an app on their mobile device. METHODS: We recruited 352 respiratory therapists (RTs) working in Taiwan medical centers and regional hospitals to fill out the 44-item ELMH questionnaire in March 2019. The exploratory factor analysis (EFA), Rasch analysis, and CNN were used as unsupervised and supervised learnings for (1) dividing RTs into 4 classes (ie, MI, false MI, health, and false health) and (2) building an ELMH predictive model to estimate 108 parameters of the CNN model. We calculated the prediction accuracy rate and created an app for classifying MI for RTs at the workplace as a web-based assessment. RESULTS: We observed that (1) 8 domains in ELMH were retained by EFA, (2) 4 types of mental health (n=6, 63, 265, and 18 located in 4 quadrants) were classified using the Rasch analysis, (3) the 44-item model yields a higher accuracy rate (0.92), and (4) an MI app available for RTs predicting MI was successfully developed and demonstrated in this study. CONCLUSIONS: The 44-item model with 108 parameters was estimated by using CNN to improve the accuracy of mental health for RTs. An MI app developed to help RTs self-detect work-related MI at an early stage should be made more available and viable in the future.


Assuntos
Transtornos Mentais , Aplicativos Móveis , Adulto , Feminino , Humanos , Masculino , Transtornos Mentais/diagnóstico , Pessoa de Meia-Idade , Redes Neurais de Computação , Inquéritos e Questionários , Taiwan , Local de Trabalho
18.
JMIR Med Inform ; 8(7): e11627, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716306

RESUMO

BACKGROUND: Cardiovascular disease causes approximately half of all deaths in patients with type 2 diabetes. Duplicative prescriptions of medication in patients with high blood pressure (hypertension), high blood sugar (hyperglycemia), and high blood lipids (hyperlipidemia) have attracted substantial attention regarding the abuse of health care resources and to implement preventive measures for such abuse. Duplicative prescriptions may occur by patients receiving redundant medications for the same condition from two or more sources such as doctors, hospitals, and multiple providers, or as a result of the patient's wandering among hospitals. OBJECTIVE: We evaluated the degree of duplicative prescriptions in Taiwanese hospitals for outpatients with three types of medications (antihypertension, antihyperglycemia, and antihyperlipidemia), and then used an online dashboard based on mobile health (mHealth) on a map to determine whether the situation has improved in the recent 25 fiscal quarters. METHODS: Data on duplicate prescription rates of drugs for the three conditions were downloaded from the website of Taiwan's National Health Insurance Administration (TNHIA) from the third quarter of 2010 to the third quarter of 2016. Complete data on antihypertension, antihyperglycemia, and antihyperlipidemia prescriptions were obtained from 408, 414, and 359 hospitals, respectively. We used scale quality indicators to assess the attributes of the study data, created a dashboard that can be traced using mHealth, and selected the hospital type with the best performance regarding improvement on duplicate prescriptions for the three types of drugs using the weighted scores on an online dashboard. Kendall coefficient of concordance (W) was used to evaluate whether the performance rankings were unanimous. RESULTS: The data quality was found to be acceptable and showed good reliability and construct validity. The online dashboard using mHealth on Google Maps allowed for easy and clear interpretation of duplicative prescriptions regarding hospital performance using multidisciplinary functionalities, and showed significant improvement in the reduction of duplicative prescriptions among all types of hospitals. Medical centers and regional hospitals showed better performance with improvement in the three types of duplicative prescriptions compared with the district hospitals. Kendall W was 0.78, indicating that the performance rankings were not unanimous (Chi square2=4.67, P=.10). CONCLUSIONS: This demonstration of a dashboard using mHealth on a map can inspire using the 42 other quality indicators of the TNHIA by hospitals in the future.

19.
Medicine (Baltimore) ; 99(21): e19925, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32481256

RESUMO

BACKGROUND: When a new disease such starts to spread, the commonly asked questions are how deadly is it? and how many people are likely to die of this outbreak? The World Health Organization (WHO) announced in a press conference on January 29, 2020 that the death rate of COVID-19 was 2% on the case fatality rate (CFR). It was underestimated assuming no lag days from symptom onset to deaths while many CFR formulas have been proposed, the estimation on Bays theorem is worthy of interpretation. Hence, it is hypothesized that the over-loaded burdens of treating patients and capacities to contain the outbreak (LSBHRS) may increase the CFR. METHODS: We downloaded COVID-19 outbreak numbers from January 21 to February 14, 2020, in countries/regions on a daily basis from Github that contains information on confirmed cases in >30 Chinese locations and other countries/regions. The pros and cons were compared among the 5 formula of CFR, including [A] deaths/confirmed; [B] deaths/(deaths + recovered); [C] deaths/(cases x days ago); [D] Bayes estimation based on [A] and the outbreak (LSBHRS) in each country/region; and [E] Bayes estimation based on [C] deaths/(cases x days ago). The coefficients of variance (CV = the ratio of the standard deviation to the mean) were applied to measure the relative variability for each CFR. A dashboard was developed for daily display of the CFR across each region. RESULTS: The Bayes based on (A)[D] has the lowest CV (=0.10) followed by the deaths/confirmed (=0.11) [A], deaths/(deaths + recoveries) (=0.42) [B], Bayes based on (C) (=0.49) [E], and deaths/(cases x days ago) (=0.59) [C]. All final CFRs will be equal using the formula (from, A to E). A dashboard was developed for the daily reporting of the CFR. The CFR (3.7%) greater than the prior CFR of 2.2% was evident in LSBHRS, increasing the CFR. A dashboard was created to present the CFRs on COVID-19. CONCLUSION: We suggest examining both trends of the Bayes based on both deaths/(cases 7 days ago) and deaths/confirmed cases as a reference to the final CFR. An app developed for displaying the provisional CFR with the 2 CFR trends can improve the underestimated CFR reported by WHO and media.


Assuntos
Infecções por Coronavirus/mortalidade , Surtos de Doenças/estatística & dados numéricos , Pneumonia Viral/mortalidade , Teorema de Bayes , COVID-19 , Humanos , Pandemias
20.
Medicine (Baltimore) ; 99(21): e20334, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32481321

RESUMO

BACKGROUND: Team science research includes authors from various fields collaborating to publish their work on certain topics. Despite the numerous papers that discussed the ordering of author names and the contributions of authors to an article, no paper evaluatedIn addition, few researchers publish academic articles without co-author collaboration. Whether the bibliometric indexes (eg, h-/x-index) of sole-author researchers are higher than those of other types of multiple authors is required for comparison. We aimed to evaluate a productive author who published 114 sole-author articles with exceptional RA and RD in academics. METHODS: By searching the PubMed database (Pubmed.com), we used the keyword of (Taiwan[affiliation]) from 2016 to 2017 and downloaded 29,356 articles. One physician (Dr. Tseng from the field of Internal Medicine) who published 12 articles as a single author was selected. His articles and citations were searched in PubMed. A comparison of various types of author ordering placements was conducted using sensitivity analysis to inspect whether this sole author earns the highest metrics in RA. Social network analysis (SNA), Gini coefficient (GC), pyramid plot, and the Kano diagram were applied to gather the following data for visualization: RESULTS:: We observed that CONCLUSIONS:: The metrics on RA are high for the sole author studied. The author's RD can be denoted by the MeSH terms and measured by the GC. The author-weighted scheme is required for quantifying author credits in an article to evaluate the author's RA. Social network analysis incorporating the Kano diagrams provided insights into the relationships between actors (eg, coauthors, MeSH terms, or journals). The methods used in this study can be replicated to evaluate other productive studies on RA and RD in the future.


Assuntos
Bibliometria , Pesquisa Biomédica/estatística & dados numéricos , MEDLINE/estatística & dados numéricos , Publicações Periódicas como Assunto/estatística & dados numéricos , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA