Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Adv ; 10(18): eadn2453, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691614

RESUMO

TRPV3 represents both temperature- and ligand-activated transient receptor potential (TRP) channel. Physiologically relevant opening of TRPV3 channels by heat has been captured structurally, while opening by agonists has only been observed in structures of mutant channels. Here, we present cryo-EM structures that illuminate opening and inactivation of wild-type human TRPV3 in response to binding of two types of agonists: either the natural cannabinoid tetrahydrocannabivarin (THCV) or synthetic agonist 2-aminoethoxydiphenylborane (2-APB). We found that THCV binds to the vanilloid site, while 2-APB binds to the S1-S4 base and ARD-TMD linker sites. Despite binding to distally located sites, both agonists induce similar pore opening and cause dissociation of a lipid that occupies the vanilloid site in their absence. Our results uncover different but converging allosteric pathways through which small-molecule agonists activate TRPV3 and provide a framework for drug design and understanding the role of lipids in ion channel function.


Assuntos
Compostos de Boro , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/química , Humanos , Compostos de Boro/química , Compostos de Boro/farmacologia , Microscopia Crioeletrônica , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Células HEK293 , Lipídeos/química
2.
Nature ; 630(8017): 762-768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778115

RESUMO

Kainate receptors, a subclass of ionotropic glutamate receptors, are tetrameric ligand-gated ion channels that mediate excitatory neurotransmission1-4. Kainate receptors modulate neuronal circuits and synaptic plasticity during the development and function of the central nervous system and are implicated in various neurological and psychiatric diseases, including epilepsy, depression, schizophrenia, anxiety and autism5-11. Although structures of kainate receptor domains and subunit assemblies are available12-18, the mechanism of kainate receptor gating remains poorly understood. Here we present cryo-electron microscopy structures of the kainate receptor GluK2 in the presence of the agonist glutamate and the positive allosteric modulators lectin concanavalin A and BPAM344. Concanavalin A and BPAM344 inhibit kainate receptor desensitization and prolong activation by acting as a spacer between the amino-terminal and ligand-binding domains and a stabilizer of the ligand-binding domain dimer interface, respectively. Channel opening involves the kinking of all four pore-forming M3 helices. Our structures reveal the molecular basis of kainate receptor gating, which could guide the development of drugs for treatment of neurological disorders.


Assuntos
Concanavalina A , Microscopia Crioeletrônica , Receptor de GluK2 Cainato , Ácido Glutâmico , Ativação do Canal Iônico , Modelos Moleculares , Domínios Proteicos , Receptores de Ácido Caínico , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de Ácido Caínico/ultraestrutura , Humanos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/química , Animais , Concanavalina A/química , Concanavalina A/metabolismo , Concanavalina A/farmacologia , Ligantes , Regulação Alostérica , Sítios de Ligação
3.
Front Cell Dev Biol ; 11: 1252953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033869

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.

4.
Nat Commun ; 14(1): 4630, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532722

RESUMO

The calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs. Here we report the structure of human TRPV6 in complex with tetrahydrocannabivarin (THCV), a natural cannabinoid inhibitor extracted from Cannabis sativa. We use cryo-electron microscopy combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to identify THCV binding sites in the portals that connect the membrane environment surrounding the protein to the central cavity of the channel pore and to characterize the allosteric mechanism of TRPV6 inhibition. We also propose the molecular pathway taken by THCV to reach its binding site. Our study provides a foundation for the development of new TRPV6-targeting drugs.


Assuntos
Cálcio , Canabinoides , Humanos , Cálcio/metabolismo , Microscopia Crioeletrônica , Canabinoides/farmacologia , Sítios de Ligação , Canais de Cátion TRPV/metabolismo , Canais de Cálcio/metabolismo
5.
Nat Struct Mol Biol ; 30(10): 1481-1494, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653241

RESUMO

Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.


Assuntos
Anticonvulsivantes , Poliaminas , Ratos , Camundongos , Animais , Humanos , Poliaminas/farmacologia , Anticonvulsivantes/farmacologia , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Nitrilas
6.
Nat Commun ; 14(1): 2659, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160865

RESUMO

Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.


Assuntos
Genisteína , Fitoestrógenos , Humanos , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Cálcio , Eletrofisiologia Cardíaca , Proliferação de Células , Canais de Cálcio , Canais de Cátion TRPV
7.
Cell Rep ; 42(2): 112124, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857176

RESUMO

Kainate receptors (KARs) are a subtype of ionotropic glutamate receptors that control synaptic transmission in the central nervous system and are implicated in neurological, psychiatric, and neurodevelopmental disorders. Understanding the regulation of KAR function by small molecules is essential for exploring these receptors as drug targets. Here, we present cryoelectron microscopy (cryo-EM) structures of KAR GluK2 in complex with the positive allosteric modulator BPAM344, competitive antagonist DNQX, and negative allosteric modulator, antiepileptic drug perampanel. Our structures show that two BPAM344 molecules bind per ligand-binding domain dimer interface. In the absence of an agonist or in the presence of DNQX, BPAM344 stabilizes GluK2 in the closed state. The closed state is also stabilized by perampanel, which binds to the ion channel extracellular collar sites located in two out of four GluK2 subunits. The molecular mechanisms of positive and negative allosteric modulation of KAR provide a guide for developing new therapeutic strategies.


Assuntos
Anticonvulsivantes , Receptores de Ácido Caínico , Receptores de Ácido Caínico/metabolismo , Microscopia Crioeletrônica
8.
Front Pharmacol ; 13: 900623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652046

RESUMO

Vanilloid-subfamily TRP channels TRPV1-6 play important roles in various physiological processes and are implicated in numerous human diseases. Advances in structural biology, particularly the "resolution revolution" in cryo-EM, have led to breakthroughs in molecular characterization of TRPV channels. Structures with continuously improving resolution uncover atomic details of TRPV channel interactions with small molecules and protein-binding partners. Here, we provide a classification of structurally characterized binding sites in TRPV channels and discuss the progress that has been made by structural biology combined with mutagenesis, functional recordings, and molecular dynamics simulations toward understanding of the molecular mechanisms of ligand action. Given the similarity in structural architecture of TRP channels, 16 unique sites identified in TRPV channels may be shared between TRP channel subfamilies, although the chemical identity of a particular ligand will likely depend on the local amino-acid composition. The characterized binding sites and molecular mechanisms of ligand action create a diversity of druggable targets to aid in the design of new molecules for tuning TRP channel function in disease conditions.

9.
Nature ; 605(7908): 172-178, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35444281

RESUMO

Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that open their pores in response to binding of the agonist glutamate1-3. An ionic current through a single iGluR channel shows up to four discrete conductance levels (O1-O4)4-6. Higher conductance levels have been associated with an increased number of agonist molecules bound to four individual ligand-binding domains (LBDs)6-10. Here we determine structures of a synaptic complex of AMPA-subtype iGluR and the auxiliary subunit γ2 in non-desensitizing conditions with various occupancy of the LBDs by glutamate. We show that glutamate binds to LBDs of subunits B and D only after it is already bound to at least the same number of LBDs that belong to subunits A and C. Our structures combined with single-channel recordings, molecular dynamics simulations and machine-learning analysis suggest that channel opening requires agonist binding to at least two LBDs. Conversely, agonist binding to all four LBDs does not guarantee maximal channel conductance and favours subconductance states O1 and O2, with O3 and O4 being rare and not captured structurally. The lack of subunit independence and low efficiency coupling of glutamate binding to channel opening underlie the gating of synaptic complexes to submaximal conductance levels, which provide a potential for upregulation of synaptic activity.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Ácido Glutâmico/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Receptores de Glutamato/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo
10.
Br J Pharmacol ; 179(14): 3628-3644, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-32959886

RESUMO

BACKGROUND AND PURPOSE: AMPA receptors, which shape excitatory postsynaptic currents and are directly involved in overactivation of synaptic function during seizures, represent a well-accepted target for anti-epileptic drugs. Trans-4-butylcyclohexane carboxylic acid (4-BCCA) has emerged as a new promising anti-epileptic drug in several in vitro and in vivo seizure models, but the mechanism of its action remained unknown. The purpose of this study is to characterize structure and dynamics of 4-BCCA interaction with AMPA receptors. EXPERIMENTAL APPROACH: We studied the molecular mechanism of AMPA receptor inhibition by 4-BCCA using a combination of X-ray crystallography, mutagenesis, electrophysiological assays, and molecular dynamics simulations. KEY RESULTS: We identified 4-BCCA binding sites in the transmembrane domain (TMD) of AMPA receptor, at the lateral portals formed by transmembrane segments M1-M4. At this binding site, 4-BCCA is very dynamic, assumes multiple poses, and can enter the ion channel pore. CONCLUSION AND IMPLICATIONS: 4-BCCA represents a low-affinity inhibitor of AMPA receptors that acts at the TMD sites distinct from non-competitive inhibitors, such as the anti-epileptic drug perampanel and the ion channel blockers. Further studies might examine the possibsility of synergistic use of these inhibitors in treatment of epilepsy and a wide range of neurological disorders and gliomas. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Assuntos
Ácidos Carboxílicos , Receptores de AMPA , Cicloexanos , Humanos , Receptores de AMPA/metabolismo , Convulsões
11.
STAR Protoc ; 2(4): 100855, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647037

RESUMO

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that play crucial roles in the central nervous system. iGluR homologs, termed glutamate receptor-like channels (GLRs), have been found in plants. Investigating the structural and functional relationship between iGluRs and GLRs was limited by GLR protein expression, purification, and structural characterization. Here, we provide a detailed protocol for Arabidopsis thaliana GLR3.4 (AtGLR3.4) expression in a mammalian cell line and purification for structure determination by cryogenic electron microscopy (cryo-EM). For the complete details on the use and execution of this protocol, please refer to Green et al. (2021).


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Microscopia Crioeletrônica , Mamíferos/metabolismo , Receptores de Glutamato/genética
12.
Mol Cell ; 81(23): 4771-4783.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678168

RESUMO

AMPA receptors (AMPARs) mediate the majority of excitatory neurotransmission. Their surface expression, trafficking, gating, and pharmacology are regulated by auxiliary subunits. Of the two types of TARP auxiliary subunits, type I TARPs assume activating roles, while type II TARPs serve suppressive functions. We present cryo-EM structures of GluA2 AMPAR in complex with type II TARP γ5, which reduces steady-state currents, increases single-channel conductance, and slows recovery from desensitization. Regulation of AMPAR function depends on its ligand-binding domain (LBD) interaction with the γ5 head domain. GluA2-γ5 complex shows maximum stoichiometry of two TARPs per AMPAR tetramer, being different from type I TARPs but reminiscent of the auxiliary subunit GSG1L. Desensitization of both GluA2-GSG1L and GluA2-γ5 complexes is accompanied by rupture of LBD dimer interface, while GluA2-γ5 but not GluA2-GSG1L LBD dimers remain two-fold symmetric. Different structural architectures and desensitization mechanisms of complexes with auxiliary subunits endow AMPARs with broad functional capabilities.


Assuntos
Canais de Cálcio/química , Claudinas/química , Receptores de AMPA/química , Motivos de Aminoácidos , Animais , Microscopia Crioeletrônica , Dimerização , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Bicamadas Lipídicas/química , Proteínas de Membrana , Conformação Molecular , Técnicas de Patch-Clamp , Polímeros , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Ratos , Transmissão Sináptica
13.
Mol Cell ; 81(15): 3216-3226.e8, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34161757

RESUMO

Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animais , Proteínas de Arabidopsis/genética , Sítios de Ligação , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Microscopia Crioeletrônica , Cristalografia por Raios X , Cisteína/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Plantas Geneticamente Modificadas , Domínios Proteicos , Receptores de Glutamato/genética
14.
J Physiol ; 599(10): 2673-2697, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32073143

RESUMO

Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca2+ ; it shows constitutive activity regulated negatively by Ca2+ and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca2+ selectivity of TRPV6 originates from the narrow selectivity filter, where Ca2+ ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca2+ and Ba2+ permeate TRPV6 pore according to the knock-off mechanism, while tight binding of Gd3+ to the aspartate ring blocks the channel and prevents Na+ from permeating the pore. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2-aminoethoxydiphenyl borate (2-APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helical bundle and shifts open-closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca2+ inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca2+ -dependent inactivation. The TRPV6-CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head-to-tail arrangement. The CaM C-terminal lobe plugs the channel through a unique cation-π interaction by inserting the side chain of lysine K115 into a tetra-tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.


Assuntos
Canais de Cálcio , Cálcio , Sítios de Ligação , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Canais de Cátion TRPV/metabolismo
15.
Cell Rep Methods ; 1(7): 100092, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35475001

RESUMO

Lactate metabolism has been shown to have increasingly important implications in cellular functions as well as in the development and pathophysiology of disease. The various roles as a signaling molecule and metabolite have led to interest in establishing a new method to detect lactate changes in live cells. Here we report our development of a genetically encoded metabolic indicator specifically for probing lactate (GEM-IL) based on superfolder fluorescent proteins and mutagenesis. With improvements in its design, specificity, and sensitivity, GEM-IL allows new applications compared with the previous lactate indicators, Laconic and Green Lindoblum. We demonstrate the functionality of GEM-IL to detect differences in lactate changes in human oncogenic neural progenitor cells and mouse primary ventricular myocytes. The development and application of GEM-IL show promise for enhancing our understanding of lactate dynamics and roles.


Assuntos
Ácido Láctico , Células-Tronco Neurais , Humanos , Animais , Camundongos , Ácido Láctico/metabolismo , Células-Tronco Neurais/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais
16.
J Gen Physiol ; 151(12): 1347-1356, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31615831

RESUMO

Fast excitatory neurotransmission is mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptor (AMPAR). AMPARs initiate depolarization of the postsynaptic neuron by allowing cations to enter through their ion channel pores in response to binding of the neurotransmitter glutamate. AMPAR function is dramatically affected by auxiliary subunits, which are regulatory proteins that form various complexes with AMPARs throughout the brain. The most well-studied auxiliary subunits are the transmembrane AMPAR regulatory proteins (TARPs), which alter the assembly, trafficking, localization, kinetics, and pharmacology of AMPARs. Recent structural and functional studies of TARPs and the TARP-fold germ cell-specific gene 1-like (GSG1L) subunit have provided important glimpses into how auxiliary subunits regulate the function of synaptic complexes. In this review, we put these recent structures in the context of new functional findings in order to gain insight into the determinants of AMPAR regulation by TARPs. We thus reveal why TARPs display a broad range of effects despite their conserved modular architecture.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de AMPA/metabolismo , Animais , Encéfalo/metabolismo , Claudinas/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Neurônios/metabolismo , Transporte Proteico/fisiologia , Transmissão Sináptica/fisiologia
17.
Neuron ; 99(5): 956-968.e4, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30122377

RESUMO

AMPA receptors mediate fast excitatory neurotransmission and are critical for CNS development and function. Calcium-permeable subsets of AMPA receptors are strongly implicated in acute and chronic neurological disorders. However, despite the clinical importance, the therapeutic landscape for specifically targeting them, and not the calcium-impermeable AMPA receptors, remains largely undeveloped. To address this problem, we used cryo-electron microscopy and electrophysiology to investigate the mechanisms by which small-molecule blockers selectively inhibit ion channel conductance in calcium-permeable AMPA receptors. We determined the structures of calcium-permeable GluA2 AMPA receptor complexes with the auxiliary subunit stargazin bound to channel blockers, including the orb weaver spider toxin AgTx-636, the spider toxin analog NASPM, and the adamantane derivative IEM-1460. Our structures provide insights into the architecture of the blocker binding site and the mechanism of trapping, which are critical for development of small molecules that specifically target calcium-permeable AMPA receptors.


Assuntos
Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/metabolismo , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de AMPA/antagonistas & inibidores , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Venenos de Aranha/farmacologia
18.
Nature ; 553(7687): 233-237, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29258289

RESUMO

Calcium-selective transient receptor potential vanilloid subfamily member 6 (TRPV6) channels play a critical role in calcium uptake in epithelial tissues. Altered TRPV6 expression is associated with a variety of human diseases, including cancers. TRPV6 channels are constitutively active and their open probability depends on the lipidic composition of the membrane in which they reside; it increases substantially in the presence of phosphatidylinositol 4,5-bisphosphate. Crystal structures of detergent-solubilized rat TRPV6 in the closed state have previously been solved. Corroborating electrophysiological results, these structures demonstrated that the Ca2+ selectivity of TRPV6 arises from a ring of aspartate side chains in the selectivity filter that binds Ca2+ tightly. However, how TRPV6 channels open and close their pores for ion permeation has remained unclear. Here we present cryo-electron microscopy structures of human TRPV6 in the open and closed states. The channel selectivity filter adopts similar conformations in both states, consistent with its explicit role in ion permeation. The iris-like channel opening is accompanied by an α-to-π-helical transition in the pore-lining transmembrane helix S6 at an alanine hinge just below the selectivity filter. As a result of this transition, the S6 helices bend and rotate, exposing different residues to the ion channel pore in the open and closed states. This gating mechanism, which defines the constitutive activity of TRPV6, is, to our knowledge, unique among tetrameric ion channels and provides structural insights for understanding their diverse roles in physiology and disease.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Células Epiteliais/metabolismo , Ativação do Canal Iônico , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/ultraestrutura , Alanina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/química , Humanos , Transporte de Íons , Conformação Proteica , Rotação , Canais de Cátion TRPV/química
19.
Nature ; 549(7670): 60-65, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28737760

RESUMO

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission throughout the central nervous system. Gated by the neurotransmitter glutamate, AMPA receptors are critical for synaptic strength, and dysregulation of AMPA receptor-mediated signalling is linked to numerous neurological diseases. Here we use cryo-electron microscopy to solve the structures of AMPA receptor-auxiliary subunit complexes in the apo, antagonist- and agonist-bound states and determine the iris-like mechanism of ion channel opening. The ion channel selectivity filter is formed by the extended portions of the re-entrant M2 loops, while the helical portions of M2 contribute to extensive hydrophobic interfaces between AMPA receptor subunits in the ion channel. We show how the permeation pathway changes upon channel opening and identify conformational changes throughout the entire AMPA receptor that accompany activation and desensitization. Our findings provide a framework for understanding gating across the family of ionotropic glutamate receptors and the role of AMPA receptors in excitatory neurotransmission.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Receptores de AMPA/química , Receptores de AMPA/ultraestrutura , Animais , Canais de Cálcio/metabolismo , Claudinas/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/agonistas , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Receptores de AMPA/agonistas , Receptores de AMPA/antagonistas & inibidores , Transmissão Sináptica
20.
Neuron ; 94(3): 569-580.e5, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472657

RESUMO

Fast excitatory neurotransmission is mediated by AMPA-subtype ionotropic glutamate receptors (AMPARs). AMPARs, localized at post-synaptic densities, are regulated by transmembrane auxiliary subunits that modulate AMPAR assembly, trafficking, gating, and pharmacology. Aberrancies in AMPAR-mediated signaling are associated with numerous neurological disorders. Here, we report cryo-EM structures of an AMPAR in complex with the auxiliary subunit GSG1L in the closed and desensitized states. GSG1L favors the AMPAR desensitized state, where channel closure is facilitated by profound structural rearrangements in the AMPAR extracellular domain, with ligand-binding domain dimers losing their local 2-fold rotational symmetry. Our structural and functional experiments suggest that AMPAR auxiliary subunits share a modular architecture and use a common transmembrane scaffold for distinct extracellular modules to differentially regulate AMPAR gating. By comparing the AMPAR-GSG1L complex structures, we map conformational changes accompanying AMPAR recovery from desensitization and reveal structural bases for regulation of synaptic transmission by auxiliary subunits.


Assuntos
Claudinas/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Animais , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Ativação do Canal Iônico , Camundongos , Modelos Moleculares , Densidade Pós-Sináptica/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA