Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(12): 1486-1496, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647526

RESUMO

Rationale: Standardized dosing of antitubercular drugs leads to variable plasma drug levels, which are associated with adverse drug reactions, delayed treatment response, and relapse. Mutations in genes affecting drug metabolism explain considerable interindividual pharmacokinetic variability; however, pharmacogenomic assays that predict metabolism of antitubercular drugs have been lacking. Objectives: We sought to develop a Nanopore sequencing panel and validate its performance in patients with active tuberculosis (TB) to personalize treatment dosing. Methods: We developed a Nanopore sequencing panel targeting 15 SNPs in five genes affecting the metabolism of antitubercular drugs. For validation, we sequenced DNA samples (n = 48) from the 1,000 Genomes Project and compared the variant calling accuracy with that of Illumina genome sequencing. We then sequenced DNA samples from patients with active TB (n = 100) from South Africa on a MinION Mk1C and evaluated the relationship between genotypes and pharmacokinetic parameters for isoniazid (INH) and rifampin (RIF). Measurements and Main Results: The pharmacogenomic panel achieved 100% concordance with Illumina sequencing in variant identification for the samples from the 1,000 Genomes Project. In the clinical cohort, coverage was more than 100× for 1,498 of 1,500 (99.8%) amplicons across the 100 samples. Thirty-three percent, 47%, and 20% of participants were identified as slow, intermediate, and rapid INH acetylators, respectively. INH clearance was 2.2 times higher among intermediate acetylators and 3.8 times higher among rapid acetylators, compared with slow acetylators (P < 0.0001). RIF clearance was 17.3% (2.50-29.9) lower in individuals with homozygous AADAC rs1803155 G→A substitutions (P = 0.0015). Conclusions: Targeted sequencing can enable the detection of polymorphisms that influence TB drug metabolism on a low-cost, portable instrument to personalize dosing for TB treatment or prevention.


Assuntos
Antituberculosos , Sequenciamento por Nanoporos , Polimorfismo de Nucleotídeo Único , Tuberculose , Humanos , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Feminino , Masculino , Adulto , Tuberculose/tratamento farmacológico , Tuberculose/genética , Sequenciamento por Nanoporos/métodos , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Medicina de Precisão/métodos , Isoniazida/uso terapêutico , Isoniazida/farmacocinética , Rifampina , Testes Farmacogenômicos/métodos , Farmacogenética/métodos , África do Sul , Adulto Jovem
2.
medRxiv ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732197

RESUMO

Rationale: Standardized dosing of anti-tubercular (TB) drugs leads to variable plasma drug levels, which are associated with adverse drug reactions, delayed treatment response, and relapse. Mutations in genes affecting drug metabolism explain considerable interindividual pharmacokinetic variability; however, pharmacogenomic (PGx) assays that predict metabolism of anti-TB drugs have been lacking. Objectives: To develop a Nanopore sequencing panel and validate its performance in active TB patients to personalize treatment dosing. Measurements and Main Results: We developed a Nanopore sequencing panel targeting 15 single nucleotide polymorphisms (SNP) in 5 genes affecting the metabolism of isoniazid (INH), rifampin (RIF), linezolid and bedaquiline. For validation, we sequenced DNA samples (n=48) from the 1000 genomes project and compared variant calling accuracy with Illumina genome sequencing. We then sequenced DNA samples from patients with active TB (n=100) from South Africa on a MinION Mk1C and evaluated the relationship between genotypes and pharmacokinetic parameters for INH and RIF. Results: The PGx panel achieved 100% concordance with Illumina sequencing in variant identification for the samples from the 1000 Genomes Project. In the clinical cohort, coverage was >100x for 1498/1500 (99.8%) amplicons across the 100 samples. One third (33%) of participants were identified as slow, 47% were intermediate and 20% were rapid isoniazid acetylators. Isoniazid clearance was significantly impacted by acetylator status (p<0.0001) with median (IQR) clearances of 11.2 L/h (9.3-13.4), 27.2 L/h (22.0-31.7), and 45.1 L/h (34.1-51.1) in slow, intermediate, and rapid acetylators. Rifampin clearance was 17.3% (2.50-29.9) lower in individuals with homozygous AADAC rs1803155 G>A substitutions (p=0.0015). Conclusion: Targeted sequencing can enable detection of polymorphisms influencing TB drug metabolism on a low-cost, portable instrument to personalize dosing for TB treatment or prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA