Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659053

RESUMO

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Organoides , Células-Tronco Pluripotentes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Organoides/metabolismo , Organoides/patologia , Células-Tronco Pluripotentes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Biológicos
2.
Adv Biol (Weinh) ; 7(12): e2300097, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590305

RESUMO

Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.


Assuntos
Doença de Parkinson , Telomerase , Humanos , Idoso , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/terapia , Telomerase/genética , Telomerase/metabolismo , Leucócitos Mononucleares/metabolismo , Medicina de Precisão , Telômero/genética , Telômero/metabolismo
3.
FASEB J ; 34(12): 16464-16475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33099835

RESUMO

Every year, hundreds of thousands of people die because of metastatic brain cancer. Most metastatic cancer research uses 2D cell culture or animal models, but they have a few limitations, such as difficulty reproducing human tissue structures. This study developed a simple 3D in vitro model to better replicate brain metastasis using human cancer cells and human embryonic stem cell-derived cerebral organoids (metastatic brain cancer cerebral organoid [MBCCO]). The MBCCO model successfully reproduced metastatic cancer processes, including cell adhesion, proliferation, and migration, in addition to cell-cell interactions. Using the MBCCO model, we demonstrated that lung-specific X protein (LUNX) plays an important role in cell proliferation and migration or invasion. We also observed astrocyte accumulation around and their interaction with cancer cells through connexin 43 in the MBCCO model. We analyzed whether the MBCCO model can be used to screen drugs by measuring the effects of gefitinib, a well-known anticancer agent. We also examined the toxicity of gefitinib using normal cerebral organoids (COs). Therefore, the MBCCO model is a powerful tool for modeling human metastatic brain cancer in vitro and can also be used to screen drugs.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Células-Tronco Embrionárias Humanas/patologia , Organoides/patologia , Células A549 , Antineoplásicos/farmacologia , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células HEK293 , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Organoides/efeitos dos fármacos
4.
Cell Biol Int ; 43(12): 1505-1515, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31293030

RESUMO

Cardiac differentiation of human pluripotent stem cells may be induced under chemically defined conditions, wherein the regulation of Wnt/ß-catenin pathway is often desirable. Here, we examined the effect of trolox, a vitamin E analog, on the cardiac differentiation of human embryonic stem cells (hESCs). 6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) significantly enhanced cardiac differentiation in a time- and dose-dependent manner after the mesodermal differentiation of hESCs. Trolox promoted hESC cardiac differentiation through its inhibitory activity against the Wnt/ß-catenin pathway. This study demonstrates an efficient cardiac differentiation method and reveals a novel Wnt/ß-catenin regulator.

5.
Proteomics ; 19(7): e1800284, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30724459

RESUMO

Diverse metabolic pathways, such as the tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation, regulate the differentiation of induced pluripotent stem cells (iPSCs) to cells of specific lineages and organs. Here, the protein dynamics during cardiac differentiation of human iPSCs into cardiomyocytes (CMs) are characterized. The differentiation is induced by N-(6-methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]-acetamide, a Wnt signaling inhibitor, and confirmed by the mRNA and protein expression of cTnT and MLC2A in CMs. For comparative proteomics, cells from three stages, namely, hiPSCs, cardiac progenitor cells, and CMs, are prepared using the three-plex tandem mass tag labeling approach. In total, 3970 proteins in triplicate analysis are identified. As the result, the upregulation of proteins associated with branched chain amino acid degradation and ketogenesis by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis are observed. The levels of 3-hydroxymethyl-3-methylglutaryl-CoA lyase, 3-hydroxymethyl-3-methylglutaryl-CoA synthase 2, and 3-hydroxybutyrate dehydrogenase 1, involved in ketone body metabolism, are determined using western blotting, and the level of acetoacetate, the final product of ketogenesis, is higher in CMs. Taken together, these observations indicate that proteins required for the production of diverse energy sources are naturally self-expressed during cardiomyogenic differentiation. Furthermore, acetoacetate concentration might act as a regulator of this differentiation.


Assuntos
Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteômica/métodos , Diferenciação Celular/fisiologia , Biologia Computacional/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA