Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hypertens ; 41(6): 979-994, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071431

RESUMO

BACKGROUND: Hypertension is the largest risk factor affecting global mortality. Despite available medications, uncontrolled hypertension is on the rise, whereby there is an urgent need to develop novel and sustainable therapeutics. Because gut microbiota is now recognized as an important entity in blood pressure regulation, one such new avenue is to target the gut-liver axis wherein metabolites are transacted via host-microbiota interactions. Knowledge on which metabolites within the gut-liver axis regulate blood pressure is largely unknown. METHOD: To address this, we analyzed bile acid profiles of human, hypertensive and germ-free rat models and report that conjugated bile acids are inversely correlated with blood pressure in humans and rats. RESULTS: Notably intervening with taurine or tauro-cholic acid rescued bile acid conjugation and reduced blood pressure in hypertensive rats. Subsequently, untargeted metabolomics uncovered altered energy metabolism following conjugation of bile acids as a mechanism alleviating high blood pressure. CONCLUSION: Together this work reveals conjugated bile acids as nutritionally re-programmable anti-hypertensive metabolites.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Humanos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Fígado , Taurina/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo
2.
Genome Biol ; 23(1): 141, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768876

RESUMO

BACKGROUND: Clinical laboratories routinely use formalin-fixed paraffin-embedded (FFPE) tissue or cell block cytology samples in oncology panel sequencing to identify mutations that can predict patient response to targeted therapy. To understand the technical error due to FFPE processing, a robustly characterized diploid cell line was used to create FFPE samples with four different pre-tissue processing formalin fixation times. A total of 96 FFPE sections were then distributed to different laboratories for targeted sequencing analysis by four oncopanels, and variants resulting from technical error were identified. RESULTS: Tissue sections that fail more frequently show low cellularity, lower than recommended library preparation DNA input, or target sequencing depth. Importantly, sections from block surfaces are more likely to show FFPE-specific errors, akin to "edge effects" seen in histology, while the inner samples display no quality degradation related to fixation time. CONCLUSIONS: To assure reliable results, we recommend avoiding the block surface portion and restricting mutation detection to genomic regions of high confidence.


Assuntos
Formaldeído , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inclusão em Parafina , Análise de Sequência de DNA , Fixação de Tecidos
3.
Hypertension ; 79(8): 1591-1601, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538603

RESUMO

BACKGROUND: Despite the availability of various classes of antihypertensive medications, a large proportion of hypertensive individuals remain resistant to treatments. The reason for what contributes to low efficacy of antihypertensive medications in these individuals is elusive. The knowledge that gut microbiota is involved in pathophysiology of hypertension and drug metabolism led us to hypothesize that gut microbiota catabolize antihypertensive medications and compromised their blood pressure (BP)-lowering effects. METHODS AND RESULTS: To test this hypothesis, we examined the BP responses to a representative ACE (angiotensin-converting enzyme) inhibitor quinapril in spontaneously hypertensive rats (SHR) with or without antibiotics. BP-lowering effect of quinapril was more pronounced in the SHR+antibiotics, indicating that gut microbiota of SHR lowered the antihypertensive effect of quinapril. Depletion of gut microbiota in the SHR+antibiotics was associated with decreased gut microbial catabolism of quinapril as well as significant reduction in the bacterial genus Coprococcus. C. comes, an anaerobic species of Coprococcus, harbored esterase activity and catabolized the ester quinapril in vitro. Co-administration of quinapril with C. comes reduced the antihypertensive effect of quinapril in the SHR. Importantly, C. comes selectively reduced the antihypertensive effects of ester ramipril but not nonester lisinopril. CONCLUSIONS: Our study revealed a previously unrecognized mechanism by which human commensal C. comes catabolizes ester ACE inhibitors in the gut and lowers its antihypertensive effect.


Assuntos
Hipertensão , Tetra-Hidroisoquinolinas , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Ésteres/farmacologia , Ésteres/uso terapêutico , Humanos , Quinapril , Ratos , Ratos Endogâmicos SHR , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/uso terapêutico
4.
Physiol Genomics ; 54(7): 242-250, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503026

RESUMO

Current knowledge of the link between microbiota and hypertension is limited to the gut. Besides the gut, oral cavity and skin are other locations where sodium chloride (NaCl) is in direct contact with microbiota. Although oral nitrate-reducing bacteria generate nitric oxide, which leads to vasodilation and lowering of blood pressure (BP), the skin excretes sodium via sweat glands and is an important site for sodium and BP homeostasis. However, knowledge on the contributions of oral and skin microbiota to BP regulation, is limited. Therefore, the current study was conducted to compare the tripartite relationship between site, sex, and genetic effects on the composition of oral, skin, and gut microbiota impacting hypertension. Microbiota were profiled from the oral cavity, skin, and feces of both male and female hypertensive Dahl salt-sensitive (S) and congenic rats with genomic substitutions on rat chromosomes (RNO) 1, 5, 9, and 10, demonstrating disparate BP effects. Sex-specific differences in ß-diversity were observed only in skin microbiota. The most abundant taxa of the oral and skin microbiota were Actinobacteria and Cyanobacteria, respectively. Oral Actinobacteria were inversely associated with BP. Although the abundance of oral Actinobacteria was upregulated by the BP locus on RNO10 in both sexes, depletion of skin Cyanobacteria decreased the protection from hypertension in the RNO5 female, but not male, congenic strain. In conclusion, to our knowledge this is the first study to identify specific microbiota in sites other than gut as contributors to BP regulation. Notably, both oral Actinobacteria and skin Cyanobacteria were beneficial for lowering BP.


Assuntos
Hipertensão , Microbiota , Animais , Bactérias , Pressão Sanguínea , Feminino , Trato Gastrointestinal , Masculino , Microbiota/genética , Ratos , Ratos Endogâmicos Dahl , Sódio , Cloreto de Sódio/farmacologia
5.
Physiol Genomics ; 54(5): 177-185, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442774

RESUMO

Human-generated negative impacts on aquatic environments are rising. Despite wild fish playing a key role in aquatic ecologies and comprising a major global food source, physiological consequences of these impacts on them are poorly understood. Here we address the issue through the lens of interrelationship between wild fish and their gut microbiota, hypothesizing that fish microbiota are reporters of the aquatic environs. Two geographically separate teleost wild-fish species were studied (Lake Erie, Ohio, and Caribbean Sea, US Virgin Islands). At each geolocation, fresh fecal samples were collected from fish in areas of presence or absence of known aquatic compromise. Gut microbiota was assessed via microbial 16S-rRNA gene sequencing and represents the first complete report for both fish species. Despite marked differences in geography, climate, water type, fish species, habitat, diet, and gut microbial compositions, the pattern of shifts in microbiota shared by both fish species was nearly identical due to aquatic compromise. Next, these data were subjected to machine learning (ML) to examine reliability of using the fish-gut microbiota as an ecomarker for anthropogenic aquatic impacts. Independent of geolocation, ML predicted aquatic compromise with remarkable accuracy (>90%). Overall, this study represents the first multispecies stress-related comparison of its kind and demonstrates the potential of artificial intelligence via ML as a tool for biomonitoring and detecting compromised aquatic conditions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Inteligência Artificial , Peixes/genética , Microbioma Gastrointestinal/genética , Aprendizado de Máquina , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
6.
Physiol Genomics ; 53(12): 518-533, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714176

RESUMO

Integration of microbiota in a host begins at birth and progresses during adolescence, forming a multidirectional system of physiological interactions. Here, we present an instantaneous effect of natural, bacterial gut colonization on the acceleration of longitudinal and radial bone growth in germ-free born, 7-wk-old male rats. Changes in bone mass and structure were analyzed after 10 days following the onset of colonization through cohousing with conventional rats and revealed unprecedented acceleration of bone accrual in cortical and trabecular compartments, increased bone tissue mineral density, improved proliferation and hypertrophy of growth plate chondrocytes, bone lengthening, and preferential deposition of periosteal bone in the tibia diaphysis. In addition, the number of small in size adipocytes increased, whereas the number of megakaryocytes decreased, in the bone marrow of conventionalized germ-free rats indicating that not only bone mass but also bone marrow environment is under control of gut microbiota signaling. The changes in bone status paralleled with a positive shift in microbiota composition toward short-chain fatty acids (SCFA)-producing microbes and a considerable increase in cecal SCFA concentrations, specifically butyrate. Furthermore, reconstitution of the host holobiont increased hepatic expression of IGF-1 and its circulating levels. Elevated serum levels of 25-hydroxy vitamin D and alkaline phosphatase pointed toward an active process of bone formation. The acute stimulatory effect on bone growth occurred independently of body mass increase. Overall, the presented model of conventionalized germ-free rats could be used to study microbiota-based therapeutics for combatting dysbiosis-related bone disorders.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Desenvolvimento Ósseo/fisiologia , Células da Medula Óssea/metabolismo , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Interações entre Hospedeiro e Microrganismos/genética , Osteogênese/fisiologia , Adipócitos/metabolismo , Animais , Densidade Óssea/fisiologia , Proliferação de Células/fisiologia , Condrócitos/metabolismo , Coprofagia , Disbiose , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Masculino , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley
7.
Physiol Genomics ; 53(6): 223-234, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870721

RESUMO

Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors. This study aimed to define sexual dimorphism and renal function in a nonobese type 2 diabetes model with the spontaneous development of advanced diabetic nephropathy (T2DN rats). T2DN rats at 12- and over 48-wk old were used to define disease progression and kidney injury development. We found impaired glucose tolerance and glomerular hyperfiltration in T2DN rats to compare with nondiabetic Wistar control. The T2DN rat displays a significant sexual dimorphism in insulin resistance, plasma cholesterol, renal and glomerular injury, urinary nephrin shedding, and albumin handling. Our results indicate that both male and female T2DN rats developed nonobese type 2 DKD phenotype, where the females had significant protection from the development of severe forms of DKD. Our findings provide further evidence for the T2DN rat strain's effectiveness for studying the multiple facets of DKD.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/diagnóstico , Rim/metabolismo , Albuminúria/metabolismo , Animais , Biomarcadores/urina , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Progressão da Doença , Eletrólitos/urina , Feminino , Taxa de Filtração Glomerular , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Rim/patologia , Rim/fisiopatologia , Masculino , Metabolômica/métodos , Ratos Wistar , Fatores Sexuais
8.
Microbiol Resour Announc ; 9(40)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004461

RESUMO

We previously demonstrated that 13 bacterial isolates from Lake Erie, when grown in groups of four to five isolates per group, degraded the cyanobacterial toxin microcystin-LR (MC-LR) into nontoxic fragments. Whole-genome sequencing of these bacteria was performed to provide genus and species information and to predict putative MC-LR-degrading genes.

9.
Hypertension ; 76(6): 1847-1855, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070663

RESUMO

Commensal gut microbiota are strongly correlated with host hemodynamic homeostasis but only broadly associated with cardiovascular health. This includes a general correspondence of quantitative and qualitative shifts in intestinal microbial communities found in hypertensive rat models and human patients. However, the mechanisms by which gut microbes contribute to the function of organs important for blood pressure (BP) control remain unanswered. To examine the direct effects of microbiota on BP, we conventionalized germ-free (GF) rats with specific pathogen-free rats for a short-term period of 10 days, which served as a model system to observe the dynamic responses when reconstituting the holobiome. The absence of microbiota in GF rats resulted with relative hypotension compared with their conventionalized counterparts, suggesting an obligatory role of microbiota in BP homeostasis. Hypotension observed in GF rats was accompanied by a marked reduction in vascular contractility. Both BP and vascular contractility were restored by the introduction of microbiota to GF rats, indicating that microbiota could impact BP through a vascular-dependent mechanism. This is further supported by the decrease in actin polymerization in arteries from GF rats. Improved vascular contractility in conventionalized GF rats, as indicated through stabilized actin filaments, was associated with an increase in cofilin phosphorylation. These data indicate that the vascular system senses the presence (or lack of) microbiota to maintain vascular tone via actin polymerization. Overall, these results constitute a fundamental discovery of the essential nature of microbiota in BP regulation.


Assuntos
Pressão Sanguínea/fisiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes/fisiologia , Artérias Mesentéricas/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Hipotensão/fisiopatologia , Masculino , Artérias Mesentéricas/citologia , Microbiota/fisiologia , Polimerização , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos/fisiologia
11.
Hypertension ; 76(1): 59-72, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450738

RESUMO

Alterations of diurnal rhythms of blood pressure (BP) and reshaping of gut microbiota are both independently associated with hypertension. However, the relationships between biorhythms of BP and gut microbial composition are unknown. We hypothesized that diurnal timing-associated alterations of microbial compositions are synchronous with diurnal rhythmicity, dip in BP, and renal function. To test this hypothesis, Dahl salt-sensitive (S) rats on low- and high-salt diets were examined for time of day effects on gut microbiota, BP, and indicators of renal damage. Major shifts in night and day patterns of specific groups of microbiota were observed between the dark (active) and light (rest) phases, which correlated with diurnal rhythmicity of BP. The diurnal abundance of Firmicutes, Bacteroidetes, and Actinobacteria were independently associated with BP. Discrete bacterial taxa were observed to correlate independently or interactively with one or more of the following 3 factors: (1) BP rhythm, (2) dietary salt, and (3) dip in BP. Phylogenetic Investigation of Communities revealed diurnal timing effects on microbial pathways, characterized by upregulated biosynthetic processes during the active phase of host, and upregulated degradation pathways of metabolites in the resting phase. Additional metagenomics functional pathways with rhythm variations were noted for aromatic amino acid metabolism and taurine metabolism. These diurnal timing dependent changes in microbiota, their functional pathways, and BP dip were associated with concerted effects of the levels of renal lipocalin 2 and kidney injury molecule-1 expression. These data provide evidence for a firm and concerted diurnal timing effects of BP, renal damage, and select microbial communities.


Assuntos
Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Hipertensão/microbiologia , Rim/efeitos dos fármacos , Cloreto de Sódio na Dieta/administração & dosagem , Ácido 3-Hidroxibutírico/sangue , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Dieta Hipossódica , Metabolismo Energético , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Genes Bacterianos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos
12.
Hypertension ; 75(6): 1386-1396, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32336227

RESUMO

For over 100 years, essential hypertension has been researched from different perspectives ranging from genetics, physiology, and immunology to more recent ones encompassing microbiology (microbiota) as a previously underappreciated field of study contributing to the cause of hypertension. Each field of study in isolation has uniquely contributed to a variety of underlying mechanisms of blood pressure regulation. Even so, clinical management of essential hypertension has remained somewhat static. We, therefore, asked if there are any converging lines of evidence from these individual fields that could be amenable for a better clinical prognosis. Accordingly, here we present converging evidence which support the view that metabolic dysfunction underlies essential hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Gerenciamento Clínico , Hipertensão Essencial , Metabolismo/fisiologia , Hipertensão Essencial/imunologia , Hipertensão Essencial/metabolismo , Hipertensão Essencial/microbiologia , Hipertensão Essencial/fisiopatologia , Humanos , Microbiota
13.
J Am Heart Assoc ; 9(2): e014373, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31928175

RESUMO

Background Pediatric hypertension is recognized as an emerging global health concern. Although new guidelines are developed for facilitating clinical management, the reasons for the prevalence of hypertension in children remain unknown. Genetics and environmental factors do not fully account for the growing incidence of pediatric hypertension. Because stable bacterial flora in early life are linked with health outcomes later in life, we hypothesized that reshaping of gut microbiota in early life affects blood pressure (BP) of pediatric subjects. Methods and Results To test this hypothesis, we administered amoxicillin, the most commonly prescribed pediatric antibiotic, to alter gut microbiota of young, genetically hypertensive rats (study 1) and dams during gestation and lactation (study 2) and recorded their BP. Reshaping of microbiota with reductions in Firmicutes/Bacteriodetes ratio were observed. Amoxicillin treated rats had lower BP compared with untreated rats. In young rats treated with amoxicillin, the lowering effect on BP persisted even after antibiotics were discontinued. Similarly, offspring from dams treated with amoxicillin showed lower systolic BP compared with control rats. Remarkably, in all cases, a decrease in BP was associated with lowering of Veillonellaceae, which are succinate-producing bacteria. Elevated plasma succinate is reported in hypertension. Accordingly, serum succinate was measured and found lower in animals treated with amoxicillin. Conclusions Our results demonstrate a direct correlation between succinate-producing gut microbiota and early development of hypertension and indicate that reshaping gut microbiota, especially by depleting succinate-producing microbiota early in life, may have long-term benefits for hypertension-prone individuals.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/prevenção & controle , Veillonellaceae/efeitos dos fármacos , Fatores Etários , Animais , Modelos Animais de Doenças , Feminino , Idade Gestacional , Hipertensão/genética , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Lactação , Masculino , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Endogâmicos Dahl , Ácido Succínico/sangue , Veillonellaceae/metabolismo
14.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912132

RESUMO

Recent work shows that gut microbial dysbiosis contributes to the risk of obesity in children whose mothers consume a high-fat diet (HFD) during both gestation and lactation or during gestation alone. Obesity predisposes children to developing precocious puberty. However, to date, no study has examined how maternal HFD (MHFD) during lactation regulates the gut microbiota (GM), pubertal timing, and fertility of offspring. Here, we found that MHFD during lactation markedly altered the GM of offspring. The pups developed juvenile obesity, early puberty, irregular estrous cycles, and signs of disrupted glucose metabolism. Remarkably, permitting coprophagia between MHFD and maternal normal chow offspring successfully reversed the GM changes as well as early puberty and insulin insensitivity. Our data suggest that microbial reconstitution may prevent or treat early puberty associated with insulin resistance.


Assuntos
Microbioma Gastrointestinal , Lactação , Exposição Materna , Obesidade Infantil/microbiologia , Puberdade Precoce/microbiologia , Animais , Dieta Hiperlipídica , Feminino , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade Infantil/complicações
15.
Cell Rep ; 25(3): 677-689.e4, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332647

RESUMO

Dietary salt reduction and exercise are lifestyle modifications for salt-sensitive hypertensives. While exercise has prominent metabolic effects, salt has an adverse effect on metabolic syndrome, of which hypertension is a hallmark. We hypothesized that dietary salt impacts metabolism in a salt-sensitive model of hypertension. An untargeted metabolomic approach demonstrates lower circulating levels of the ketone body, beta-hydroxybutyrate (ßOHB), in high salt-fed hypertensive rats. Despite the high salt intake, specific rescue of ßOHB levels by nutritional supplementation of its precursor, 1,3-butanediol, attenuates hypertension and protects kidney function. This beneficial effect of ßOHB was likely independent of gut-microbiotal and Th17-mediated effects of salt and instead facilitated by ßOHB inhibiting the renal Nlrp3 inflammasome. The juxtaposed effects of dietary salt and exercise on salt-sensitive hypertension, which decrease and increase ßOHB respectively, indicate that nutritional supplementation of a precursor of ßOHB provides a similar benefit to salt-sensitive hypertension as exercise.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/prevenção & controle , Inflamassomos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Ácido 3-Hidroxibutírico/administração & dosagem , Animais , Pressão Sanguínea , Aromatizantes/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Masculino , Ratos , Ratos Endogâmicos Dahl
16.
J Neurosci Res ; 88(7): 1445-56, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20029967

RESUMO

In this study we investigated the differentiation of human neural progenitor cells (hNPCs) in vitro to evaluate their differentiation potential and in vivo to explore their viability and behavior following transplantation. Progenitors were maintained as neurospheres in media containing basic fibroblast growth factor and epidermal growth factor. Micropatterned polystyrene substrates were fabricated and coated with ECL (entactin, collagen, and laminin) to provide physical and chemical guidance during the differentiation of the hNPCs. The hNPCs growing on the micropatterned substrates showed no differences in proliferation or differentiation potential compared with those hNPCs growing on the nonpatterned substrates. However, hNPCs cultured on the micropatterned substrates were aligned in the direction of the micropattern compared with those cells growing on the nonpatterned substrates. Furthermore, hNPC migration was directed in alignment with the micropatterned substrates. Transplantation of the hNPCs into the developing retina was used to evaluate their behavior in vivo. Cells displayed extensive survival, differentiation, and morphological integration following xenotransplant into the retina, even in the absence of immunosuppression. Taken together, our results show that these multipotent hNPCs are a neurogenic progenitor population that can be maintained in culture for extended periods. Although the micropatterned substrates have no major effect on the proliferation or differentiation of the hNPCs, they clearly promoted alignment and directed neurite outgrowth along the pattern as well as directing migration of the cells. These approaches may provide important strategies to guide the growth and differentiation of NPCs in vitro and in vivo.


Assuntos
Diferenciação Celular/fisiologia , Meios de Cultura/farmacologia , Sobrevivência de Enxerto/fisiologia , Retina/crescimento & desenvolvimento , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Colágeno/química , Colágeno/farmacologia , Meios de Cultura/química , Humanos , Laminina/química , Laminina/farmacologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Poliestirenos/química , Poliestirenos/farmacologia , Retina/citologia , Retina/cirurgia , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células-Tronco/citologia
17.
Exp Eye Res ; 88(3): 553-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19084520

RESUMO

The purpose of this investigation is to characterize parvalbumin-immunoreactive (IR) neurons in the inner nuclear layer (INL) of zebrafish retina through immunocytochemistry, quantitative analysis, and confocal microscopy. In the INL, parvalbumin-IR neurons were located in the inner marginal portion of the INL. On the basis of dendritic stratification in the inner plexiform layer (IPL), at least two types of amacrine cells were IR for parvalbumin. The first one formed distinctive laminar tiers within s4 (PVs4) of the IPL, and the second within s5 (PVs5). The average number of PVs4 cells was 8263 cells per retina (n=3), and the mean density was 1671cells/mm(2). The average number of PVs5 cells was 1037 cells per retina (n=3), and the mean density was 210cells/mm(2). Quantitatively, 88.9% of anti-parvalbumin labeled neurons were PVs4 cells and 11.1% were PVs5 cells. Their density was highest in the midcentral region of the ventrotemporal retina and lowest in the periphery of the dorsonasal retina. The average regularity index of the PVs4 cell mosaic was 4.09, while the average regularity index of the PVs5 cell mosaic was 3.46. No parvalbumin-IR cells expressed calretinin or disabled-1, markers for AII amacrine cells, in several animals. These results indicate that parvalbumin-IR neurons in zebrafish are limited to specific subpopulations of amacrine cells and the expressional pattern of parvalbumin may not correspond to AII amacrine cells in several other animals. Their distribution suggests that parvalbumin-IR neurons are mainly involved in ON pathway information flow.


Assuntos
Células Amácrinas/metabolismo , Parvalbuminas/metabolismo , Peixe-Zebra/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Contagem de Células , Microscopia Confocal , Modelos Animais , Parvalbuminas/imunologia , Peixe-Zebra/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA