RESUMO
There is limited information on the ingestion of cold drinks after exercise. We investigated the thermoregulatory effects of ingesting drinks at 4°C (COLD) or 28°C (WARM) during work-rest cycles in the heat. On 2 separate occasions, 8 healthy males walked on the treadmill for 2 cycles (45 min work; 15 min rest) at 5.5 km/h with 7.5% gradient. Two aliquots of 400 mL of plain water at either 4°C or 28°C were consumed during each rest period. Rectal temperature (T re ), skin temperature (T sk ), heart rate and subjective ratings were measured. Mean decrease in T re at the end of the final work-rest cycle was greater after the ingestion of COLD drinks (0.5±0.2°C) than WARM drinks (0.3±0.2°C; P<0.05). Rate of decrease in T sk was greater after ingestion of COLD drinks during the first rest period (P<0.01). Mean heart rate was lower after ingesting COLD drinks (P<0.05). Ratings of thermal sensation were lower during the second rest phase after ingestion of COLD drinks (P<0.05). The ingestion of COLD drinks after exercise resulted in a lesser than expected reduction of T re . Nevertheless, the reduction in T re implies a potential for improved work tolerance during military and occupational settings in the heat.
Assuntos
Ingestão de Líquidos/fisiologia , Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Corporal , Temperatura Baixa , Teste de Esforço , Temperatura Alta , Humanos , Masculino , Descanso , Temperatura Cutânea , Adulto JovemRESUMO
The efficacy of ingestion of ice slurry on actual outdoor endurance performance is unknown. This study aimed to investigate ice slurry ingestion as a cooling intervention before a 10 km outdoor running time-trial. Twelve participants ingested 8 g · kg (- 1) of either ice slurry ( - 1.4°C; ICE) or ambient temperature drink (30.9°C; CON) and performed a 15-min warm-up prior to a 10 km outdoor running time-trial (Wet Bulb Globe Temperature: 28.2 ± 0.8°C). Mean performance time was faster with ICE (2 715 ± 396 s) than CON (2 730 ± 385 s; P=0.023). Gastrointestinal temperature (Tgi) reduced by 0.5 ± 0.2°C after ICE ingestion compared with 0.1 ± 0.1°C (P<0.001) with CON. During the run, the rate of rise in Tgi was greater (P=0.01) with ICE than with CON for the first 15 min. At the end of time-trial, Tgi was higher with ICE (40.2 ± 0.6°C) than CON (39.8 ± 0.4°C, P=0.005). Ratings of thermal sensation were lower during the cooling phase and for the first kilometre of the run ( - 1.2 ± 0.8; P<0.001). Although ingestion of ice slurry resulted in a transient increase in heat strain following a warm up routine, it is a practical and effective pre-competition cooling manoeuvre to improve performance in warm and humid environments.