Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 64(18): 13766-13779, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34519505

RESUMO

5-HT7R belongs to a family of G protein-coupled receptors and is associated with a variety of physiological processes in the central nervous system via the activation of the neurotransmitter serotonin (5-HT). To develop selective and biased 5-HT7R ligands, we designed and synthesized a series of pyrazolyl-diazepanes 2 and pyrazolyl-piperazines 3, which were evaluated for binding affinities to 5-HTR subtypes and functional selectivity for G protein and ß-arrestin signaling pathways of 5-HT7R. Among them, 1-(3-(3-chlorophenyl)-1H-pyrazol-4-yl)-1,4-diazepane 2c showed the best binding affinity for 5-HT7R and selectivity over other 5-HTR subtypes. It was also revealed as a G protein-biased antagonist. The self-grooming behavior test was performed with 2c in vivo with Shank3-/- transgenic (TG) mice, wherein 2c significantly reduced self-grooming duration time to the level of wild-type mice. The results suggest that 5-HT7R could be a potential therapeutic target for treating autism spectrum disorder stereotypy.


Assuntos
Transtorno Autístico/tratamento farmacológico , Pirazóis/uso terapêutico , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/uso terapêutico , Animais , Desenho de Fármacos , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Pirazóis/síntese química , Pirazóis/metabolismo , Receptores de Serotonina/química , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/metabolismo
2.
Korean J Pain ; 34(2): 185-192, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785670

RESUMO

BACKGROUND: It is known that some analgesics as well as pain can affect the immune system. The aim of this study was to investigate the analgesic effect and immunomodulation of pregabalin (PGB) in a mouse incisional pain model. METHODS: A postoperative pain model was induced by hind paw plantar incision in male BALB/c mice. Mice were randomly divided into four groups (n = 8): a saline-treated incision (incision), PGB-treated incision (PGB-incision), sham controls without incision or drug treatment (control), and a PGB-treated control (PGB-control). In the PGB treated groups, PGB was administered intraperitoneally (IP) 30 minutes before and 1 hour after the plantar incision. Changes of the mechanical nociceptive thresholds following incision were investigated. Mice were euthanized for spleen harvesting 12 hours after the plantar incision, and natural killer (NK) cytotoxicity to YAC 1 cells and lymphocyte proliferation responses to phytohemagglutinin were compared among these four groups. RESULTS: Mechanical nociceptive thresholds were decreased after plantar incision and IP PGB administration recovered these decreased mechanical nociceptive thresholds (P < 0.001). NK activity was increased by foot incision, but NK activity in the PGB-incision group was significantly lower than that in the Incision group (P < 0.001). Incisional pain increased splenic lymphocyte proliferation, but PGB did not alter this response. CONCLUSIONS: Incisional pain alters cell immunity of the spleen in BALB/c mice. PGB showed antinocieptive effect on mouse incisional pain and attenuates the activation of NK cells in this painful condition. These results suggest that PGB treatment prevents increases in pain induced NK cell activity.

3.
J Korean Neurosurg Soc ; 60(2): 130-137, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28264232

RESUMO

OBJECTIVE: Autophagy is one of the key responses of cells to programmed cell death. Memantine, an approved anti-dementia drug, has an antiproliferative effect on cancer cells but the mechanism is poorly understood. The aim of the present study was to test the possibility of induction of autophagic cell death by memantine in glioma cell lines. METHODS: Glioma cell lines (T-98 G and U-251 MG) were used for this study. RESULTS: The antiproliferative effect of memantine was shown on T-98 G cells, which expressed N-methyl-D-aspartate 1 receptor (NMDAR1). Memantine increased the autophagic-related proteins as the conversion ratio of light chain protein 3-II (LC3-II)-/LC3-I and the expression of beclin-1. Memantine also increased formation of autophagic vacuoles observed under a transmission electron microscope. Transfection of small interfering RNA (siRNA) to knock down NMDAR1 in the glioma cells induced resistance to memantine and decreased the LC3-II/LC3-I ratio in T-98 G cells. CONCLUSION: Our study demonstrates that in glioma cells, memantine inhibits proliferation and induces autophagy mediated by NMDAR1.

4.
Eur J Med Chem ; 110: 302-10, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26852005

RESUMO

To discover a novel 5-HT7R antagonist for treatment of depression, we designed N-acyl-carbazole derivatives which were synthesized and biologically evaluated against 5-HT7R. Among total 30 compounds synthesized, four compounds 27-30 showed good binding affinities with Ki values of <100 nM. The compound 28, 1-(9H-carbazol-9-yl)-6-(4-(2-methoxyphenyl)piperazin-1-yl)hexan-1-one, showed good selectivity over other serotonin receptor subtypes and turned out to be a novel selective 5-HT7R antagonist following functional assays. The compound 28 showed moderate activity on hERG channel and good stability in microsomal stability test. The compound 28 exhibited a good pharmacokinetic profile with 67.8% oral bioavailability and good penetration to the brain. The compound 28 was also tested in in vivo depression animal model and showed antidepressant effect in the forced swimming test. Therefore, the selective 5-HT7R antagonist 28 can be considered as a good lead for discovery of novel 5-HT7R antagonists as antidepressants.


Assuntos
Antidepressivos/química , Antidepressivos/farmacologia , Carbazóis/química , Carbazóis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Acilação , Animais , Antidepressivos/farmacocinética , Células CHO , Carbazóis/farmacocinética , Cricetulus , Células HEK293 , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacocinética , Relação Estrutura-Atividade
5.
Int J Med Sci ; 11(3): 226-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516345

RESUMO

BACKGROUND: Pain plays roles in both the nervous system and immune system. Changes in the neuroendocrine pathway under pain conditions give rise to sympathetic outflow with increased plasma catecholamines and activate immune reactions. Dexmedetomidine exerts sedative, analgesic, and anesthetic-sparing effects and is known to diminish pro-inflammatory processes by central sympatholytic effects. To investigate the influence of the analgesic effect of dexmedetomidine on immunomodulation under pain conditions, splenic natural killer (NK) tumoricidal cytotoxic activity, proliferative ability of T lymphocytes, and cytokine changes were assessed. METHODS: After evaluation of the analgesic efficacy of dexmedetomidine in C57BL mice that were subjected to formalin-induced pain, dexmedetomidine (30 µg/kg) or saline was injected intraperitoneally (ip) 30 min before formalin (20 µL of 2% formalin in 0.9% saline) injection. NK cell activity against NK-sensitive YAC-1 lymphoma cells was evaluated by the percentage of specific lactate dehydrogenase (LDH) release. Various numbers of effector cells (NK cells) were added to the wells of a microtiter plate containing 2 × 10(4) target YAC-1 cells in 100 µL, to achieve final effector-to-target cell ratios of 80:1, 40:1, and 20:1. The level of lymphocyte proliferation in response to phytohemagglutinin (PHA) was detected by bromodeoxyuridine (BrdU) incorporation assay. TNF-α, IL-1ß, and IL-10 levels were determined in blood samples and supernatants of splenocyte preparations. RESULTS: IP administration of dexmedetomidine significantly decreased the time of licking and biting during the first and second phases of the formalin test (p <0.001). Formalin-induced pain led to higher activity of NK cells than in sham-treated mice (p <0.05), but NK activity was not increased significantly by ip dexmedetomidine treatment. Formalin-induced pain significantly increased splenic lymphocyte proliferation (p <0.05), but dexmedetomidine did not alter this response. There was a significant increase in plasma TNF-α (p = 0.048) and IL-6 (p = 0.014) levels after formalin-induced pain. However, the differences between the responses after ip dexmedetomidine did not change significantly. CONCLUSIONS: Dexmedetomidine showed antinociceptive effect on both of acute pain phase 1 and hyperalgesic phase 2 of formalin pain model. Formalin-induced pain alters cellular immunity of spleen in mice. Dexmedetomidine attenuates the activation of NK cells under pain condition, but neither the proliferative response of the splenic lymphocytes nor the cytokine production was affected by dexmedetomidine.


Assuntos
Analgésicos/administração & dosagem , Dexmedetomidina/administração & dosagem , Imunidade/efeitos dos fármacos , Dor/tratamento farmacológico , Animais , Formaldeído/toxicidade , Interleucina-10/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Dor/induzido quimicamente , Dor/imunologia , Baço/citologia , Baço/efeitos dos fármacos
6.
ChemMedChem ; 8(11): 1855-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24039134

RESUMO

The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.


Assuntos
Compostos de Bifenilo/química , Desenho de Fármacos , Fenóis/química , Fenóis/farmacologia , Piperazinas/química , Receptores de Serotonina/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Compostos de Bifenilo/farmacologia , Ligantes , Modelos Moleculares , Piperazinas/síntese química , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 21(17): 5480-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810676

RESUMO

In Parkinson's disease, the motor impairments are mainly caused by the death of dopaminergic neurons. Among the enzymes which are involved in the biosynthesis and catabolism of dopamine, monoamine oxidase B (MAO-B) has been a therapeutic target of Parkinson's disease. However, due to the undesirable adverse effects, development of alternative MAO-B inhibitors with greater optimal therapeutic potential towards Parkinson's disease is urgently required. In this study, we designed and synthesized the oxazolopyridine and thiazolopyridine derivatives, and biologically evaluated their inhibitory activities against MAO-B. Structure-activity relationship study revealed that the piperidino group was the best choice for the R(1) amino substituent to the oxazolopyridine core structure and the activities of the oxazolopyridines with various phenyl rings were between 267.1 and 889.5nM in IC50 values. Interestingly, by replacement of the core structure from oxazolopyrine to thiazolopyridine, the activities were significantly improved and the compound 1n with the thiazolopyridine core structure showed the most potent activity with the IC50 value of 26.5nM. Molecular docking study showed that van der Waals interaction in the human MAO-B active site could explain the enhanced inhibitory activities of thiazolopyridine derivatives.


Assuntos
Inibidores da Monoaminoxidase/uso terapêutico , Monoaminoxidase/química , Oxazóis/química , Doença de Parkinson/tratamento farmacológico , Piridinas/química , Tiazóis/química , Sítios de Ligação , Domínio Catalítico , Dopamina/metabolismo , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Piridinas/síntese química , Piridinas/uso terapêutico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA