Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
medRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745540

RESUMO

Haloperidol is an anti-psychotic used for the treatment of schizophrenia or Tourette disorder. Here we report, by studying three large administrative health insurance databases, that haloperidol use is associated with a reduced risk of developing rheumatoid arthritis. A meta-analysis revealed a 31% reduced hazard of incident rheumatoid arthritis among individuals with schizophrenia or Tourette disorder treated with haloperidol compared to those treated with other anti-psychotic drugs. These findings suggest a potential benefit of haloperidol in rheumatoid arthritis and provide a rationale for randomized controlled trials to provide causal insights.

2.
Invest Ophthalmol Vis Sci ; 64(5): 3, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129905

RESUMO

Purpose: Rhegmatogenous retinal detachment (RRD) is a vision-threatening event that benefits from surgical intervention. While awaiting surgical reattachment, irreversible hypoxic and inflammatory damage to the retina often occurs. An interim therapy protecting photoreceptors could improve functional outcomes. We sought to determine whether Kamuvudine-9 (K-9), a derivative of nucleoside reverse transcriptase inhibitors (NRTIs) that inhibits inflammasome activation, and the NRTIs lamivudine (3TC) and azidothymidine (AZT) could protect the retina following RRD. Methods: RRD was induced in mice via subretinal injection (SRI) of 1% carboxymethylcellulose (CMC). To simulate outcomes following the clinical management of RRD, we determined the optimal conditions by which SRI of CMC induced spontaneous retinal reattachment (SRR) occurs over 10 days (RRD/SRR). K-9, 3TC, or AZT was administered via intraperitoneal injection. Inflammasome activation pathways were monitored by abundance of cleaved caspase-1, IL-18, and cleaved caspase-8, and photoreceptor death was assessed by TUNEL staining. Retinal function was assessed by full-field scotopic electroretinography. Results: RRD induced retinal inflammasome activation and photoreceptor death in mice. Systemic administration of K-9, 3TC, or AZT inhibited retinal inflammasome activation and photoreceptor death. In the RRD/SRR model, K-9 protected retinal electrical function during the time of RRD and induced an improvement following retinal reattachment. Conclusions: K-9 and NRTIs exhibit anti-inflammatory and neuroprotective activities in experimental RRD. Given its capacity to protect photoreceptor function during the period of RRD and enhance retinal function following reattachment, K-9 shows promise as a retinal neuroprotectant and warrants study in RRD. Further, this novel RRD/SRR model may facilitate experimental evaluation of functional outcomes relevant to RRD.


Assuntos
Descolamento Retiniano , Animais , Camundongos , Descolamento Retiniano/cirurgia , Inflamassomos , Acuidade Visual , Retina , Estudos Retrospectivos , Vitrectomia
3.
medRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993694

RESUMO

Innate immune signaling through the NLRP3 inflammasome has been implicated in the pathogenesis of Alzheimer's disease (AD), the most prevalent form of dementia. We previously demonstrated that nucleoside reverse transcriptase inhibitors (NRTIs), drugs approved to treat HIV and hepatitis B infections, also inhibit inflammasome activation. Here we report that in humans, NRTI exposure was associated with a significantly lower incidence of AD in two of the largest health insurance databases in the United States. Treatment of aged 5xFAD mice (a mouse model of amyloid-ß deposition that expresses five mutations found in familial AD) with Kamuvudine-9 (K-9), an NRTI-derivative with enhanced safety profile, reduced Aß deposition and reversed their cognitive deficit by improving their spatial memory and learning performance to that of young wild-type mice. These findings support the concept that inflammasome inhibition could benefit AD and provide a rationale for prospective clinical testing of NRTIs or K-9 in AD.

6.
Nat Protoc ; 17(6): 1468-1485, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418688

RESUMO

Subretinal injection (SRI) is a widely used technique in retinal research and can be used to deliver nucleic acids, small molecules, macromolecules, viruses, cells or biomaterials such as nanobeads. Here we describe how to undertake SRI of mice. This protocol was adapted from a technique initially described for larger animals. Although SRI is a common procedure in eye research laboratories, there is no published guidance on the best practices for determining what constitutes a 'successful' SRI. Optimal injections are required for reproducibility of the procedure and, when carried out suboptimally, can lead to erroneous conclusions. To address this issue, we propose a standardized protocol for SRI with 'procedure success' defined by follow-up examination of the retina and the retinal pigmented epithelium rather than solely via intraoperative endpoints. This protocol takes 7-14 d to complete, depending on the reagent delivered. We have found, by instituting a standardized training program, that trained ophthalmologists achieve reliable proficiency in this technique after ~350 practice injections. This technique can be used to gain insights into retinal physiology and disease pathogenesis and to test the efficacy of experimental compounds in the retina or retinal pigmented epithelium.


Assuntos
Retina , Epitélio Pigmentado da Retina , Animais , Injeções , Camundongos , Reprodutibilidade dos Testes , Retina/patologia
7.
Transl Vis Sci Technol ; 11(3): 13, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35275207

RESUMO

Purpose: Subretinal injection (SRI) in mice is widely used in retinal research, yet the learning curve (LC) of this surgically challenging technique is unknown. Methods: To evaluate the LC for SRI in a murine model, we analyzed training data from three clinically trained ophthalmic surgeons from 2018 to 2020. Successful SRI was defined as either the absence of retinal pigment epithelium (RPE) degeneration after phosphate buffered saline injection or the presence of RPE degeneration after Alu RNA injection. Multivariable survival-time regression models were used to evaluate the association between surgeon experience and success rate, with adjustment for injection agents, and to calculate an approximate case number to achieve a 95% success rate. Cumulative sum (CUSUM) analyses were performed and plotted individually to monitor each surgeon's simultaneous performance. Results: Despite prior microsurgery experience, the combined average success rate of the first 50 cases in mice was only 27%. The predicted SRI success rate did not reach a plateau above 95% until approximately 364 prior cases. Using the 364 training cases as a cutoff point, the predicted probability of success for cases 1 to 364 was 65.38%, and for cases 365 to 455 it was 99.32% (P < 0.0001). CUSUM analysis showed an initial upward slope and then remained within the decision intervals with an acceptable success rate set at 95% in the late stage. Conclusions: This study demonstrates the complexity and substantial LC for successful SRI in mice with high confidence. A systematic training system could improve the reliability and reproducibility of SRI-related experiments and improve the interpretation of experimental results using this technique. Translational Relevance: Our prediction model and monitor system allow objective quantification of technical proficiency in the field of subretinal drug delivery and gene therapy for the first time, to the best of our knowledge.


Assuntos
Oftalmologistas , Cirurgiões , Animais , Humanos , Curva de Aprendizado , Camundongos , Duração da Cirurgia , Reprodutibilidade dos Testes , Cirurgiões/educação
8.
Sci Immunol ; 6(66): eabi4493, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860583

RESUMO

Detection of microbial products by multiprotein complexes known as inflammasomes is pivotal to host defense against pathogens. Nucleotide-binding domain leucine-rich repeat (NLR) CARD domain containing 4 (NLRC4) forms an inflammasome in response to bacterial products; this requires their detection by NLR family apoptosis inhibitory proteins (NAIPs), with which NLRC4 physically associates. However, the mechanisms underlying sterile NLRC4 inflammasome activation, which is implicated in chronic noninfectious diseases, remain unknown. Here, we report that endogenous short interspersed nuclear element (SINE) RNAs, which promote atrophic macular degeneration (AMD) and systemic lupus erythematosus (SLE), induce NLRC4 inflammasome activation independent of NAIPs. We identify DDX17, a DExD/H box RNA helicase, as the sensor of SINE RNAs that licenses assembly of an inflammasome comprising NLRC4, NLR pyrin domain­containing protein 3, and apoptosis-associated speck-like protein­containing CARD and induces caspase-1 activation and cytokine release. Inhibiting DDX17-mediated NLRC4 inflammasome activation decreased interleukin-18 release in peripheral blood mononuclear cells of patients with SLE and prevented retinal degeneration in an animal model of AMD. Our findings uncover a previously unrecognized noncanonical NLRC4 inflammasome activated by endogenous retrotransposons and provide potential therapeutic targets for SINE RNA­driven diseases.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação ao Cálcio/imunologia , RNA Helicases DEAD-box/imunologia , Inflamassomos/imunologia , RNA/imunologia , Retroelementos/imunologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas de Ligação ao Cálcio/deficiência , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Nat Commun ; 12(1): 6207, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707113

RESUMO

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Assuntos
Dano ao DNA , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Fosforilação , Poli ADP Ribosilação , Proteínas Serina-Treonina Quinases/metabolismo , Reparo de DNA por Recombinação , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo
10.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586848

RESUMO

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

11.
Signal Transduct Target Ther ; 6(1): 149, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33850097

RESUMO

Nonfibrillar amyloid-ß oligomers (AßOs) are a major component of drusen, the sub-retinal pigmented epithelium (RPE) extracellular deposits characteristic of age-related macular degeneration (AMD), a common cause of global blindness. We report that AßOs induce RPE degeneration, a clinical hallmark of geographic atrophy (GA), a vision-threatening late stage of AMD that is currently untreatable. We demonstrate that AßOs induce activation of the NLRP3 inflammasome in the mouse RPE in vivo and that RPE expression of the purinergic ATP receptor P2RX7, an upstream mediator of NLRP3 inflammasome activation, is required for AßO-induced RPE degeneration. Two classes of small molecule inflammasome inhibitors-nucleoside reverse transcriptase inhibitors (NRTIs) and their antiretrovirally inert modified analog Kamuvudines-both inhibit AßOs-induced RPE degeneration. These findings crystallize the importance of P2RX7 and NLRP3 in a disease-relevant model of AMD and identify inflammasome inhibitors as potential treatments for GA.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Degeneração Macular/tratamento farmacológico , Epitélio Pigmentado da Retina/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Knockout
12.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526699

RESUMO

Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.


Assuntos
Elementos Alu/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Degeneração Macular/genética , Pigmentos da Retina/metabolismo , Animais , Citoplasma/genética , DNA Complementar/genética , Epitélio/metabolismo , Epitélio/patologia , Humanos , Degeneração Macular/patologia , Pigmentos da Retina/biossíntese , Retroelementos/genética , Transcrição Reversa/genética
13.
Invest Ophthalmol Vis Sci ; 61(10): 4, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32749462

RESUMO

Purpose: Azidothymidine (AZT), a nucleoside reverse transcriptase inhibitor, possesses anti-inflammatory and anti-angiogenic activity independent of its ability to inhibit reverse transcriptase. The aim of this study was to evaluate the efficacy of 5'-glucuronyl azidothymidine (GAZT), an antiretrovirally inert hepatic clinical metabolite of AZT, in mouse models of retinal pigment epithelium (RPE) degeneration and choroidal neovascularization (CNV), hallmark features of dry and wet age-related macular degeneration (AMD), respectively. Methods: RPE degeneration was induced in wild-type (WT) C57BL/6J mice by subretinal injection of Alu RNA. RPE degeneration was assessed by fundus photography and confocal microscopy of zonula occludens-1-stained RPE flat mounts. Choroidal neovascularization was induced by laser injury in WT mice, and CNV volume was measured by confocal microscopy. AZT and GAZT were delivered by intravitreous injections. Inflammasome activation was monitored by western blotting for caspase-1 and by ELISA for IL-1ß in Alu RNA-treated bone marrow-derived macrophages (BMDMs). Results: GAZT inhibited Alu RNA-induced RPE degeneration and laser-induced CNV. GAZT also reduced Alu RNA-induced caspase-1 activation and IL-1ß release in BMDMs. Conclusions: GAZT possesses dual anti-inflammatory and anti-angiogenic properties and could be a viable treatment option for both forms of AMD.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Atrofia Geográfica/tratamento farmacológico , Epitélio Pigmentado da Retina/efeitos dos fármacos , Inibidores da Transcriptase Reversa/uso terapêutico , Zidovudina/análogos & derivados , Animais , Western Blotting , Caspase 1/metabolismo , Neovascularização de Coroide/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Atrofia Geográfica/metabolismo , Interleucina-1beta/metabolismo , Injeções Intravítreas , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Inibidores da Transcriptase Reversa/administração & dosagem , Zidovudina/administração & dosagem , Zidovudina/uso terapêutico , Proteína da Zônula de Oclusão-1/metabolismo
14.
Vision (Basel) ; 2(3)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31735894

RESUMO

Neovascular age-related macular degeneration (nAMD) is one of the leading causes of blindness among the aging population. The current treatment options for nAMD include intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF). However, standardized frequent administration of anti-VEGF injections only improves vision in approximately 30-40% of nAMD patients. Current therapies targeting nAMD pose a significant risk of retinal fibrosis and geographic atrophy (GA) development in nAMD patients. A need exists to develop new therapies to treat nAMD with effective and long-term anti-angiogenic effects. Recent research on nAMD has identified novel therapeutic targets and angiogenic signaling mechanisms involved in its pathogenesis. For example, tissue factor, human intravenous immune globulin, interferon-ß signaling, cyclooxygenase-2 (COX-2) and cytochrome P450 monooxygenase lipid metabolites have been identified as key players in the development of angiogenesis in AMD disease models. Furthermore, novel therapies such as NACHT, LRR and PYD domains containing protein 3 (NLRP3) inflammasome inhibition, inhibitors of integrins and tissue factor are currently being tested at the level of clinical trials to treat nAMD. The aim of this review is to discuss the scope for alternative therapies proposed as anti-VEGFs for the treatment of nAMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA