Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Physiol Plant ; 174(1): e13648, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35150009

RESUMO

Female fig (Ficus carica L.) fruit are characterized by a major increase in volume and sugar content during the final week of development. A detailed developmental analysis of water and dry matter accumulation during these final days indicated a temporal separation between the increase in volume due to increasing water content and a subsequent sharp increase in sugar content during a few days. The results present fig as an extreme example of sugar import and accumulation, with calculated import rates that are one order of magnitude higher than those of other sugar-accumulating sweet fruit species. To shed light on the metabolic changes occurring during this period, we followed the expression pattern of 80 genes encoding sugar metabolism enzymes and sugar transporter proteins identified in fig fruit. A parallel comparison with male fig fruits, which do not accumulate sugar during ripening, highlighted the genes specifically related to sugar accumulation. Tissue-specific analysis indicated that the expression of genes involved in sugar metabolism and transport undergoes a global transition.


Assuntos
Ficus , Ficus/genética , Ficus/metabolismo , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Açúcares/metabolismo
2.
Plants (Basel) ; 9(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153170

RESUMO

Dark-grown (etiolated) branches of many recalcitrant plant species root better than their green counterparts. Here it was hypothesized that changes in cell-wall properties and hormones occurring during etiolation contribute to rooting efficiency. Measurements of chlorophyll, carbohydrate and auxin contents, as well as tissue compression, histological analysis and gene-expression profiles were determined in etiolated and de-etiolated branches of the avocado rootstock VC801. Differences in chlorophyll content and tissue rigidity, and changes in xyloglucan and pectin in cambium and parenchyma cells were found. Interestingly, lignin and sugar contents were similar, suggesting that de-etiolated branches resemble the etiolated ones in this respect. Surprisingly, the branches that underwent short de-etiolation rooted better than the etiolated ones, and only a slight difference in IAA content between the two was observed. Gene-expression profiles revealed an increase in ethylene-responsive transcripts in the etiolated branches, which correlated with enrichment in xyloglucan hydrolases. In contrast, transcripts encoding pectin methylesterase and pectolyases were enriched in the de-etiolated branches. Taken together, it seems that the short de-etiolation period led to fine tuning of the conditions favoring adventitious root formation in terms of auxin-ethylene balance and cell-wall properties.

3.
Front Plant Sci ; 11: 255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211009

RESUMO

The temporal formation and spatial distribution of stomata on the surface of citrus floral organs and, specifically, on the ovule from which the fruit develops, were analyzed using citrus plants that express green fluorescent protein (GFP) under the guard cell-specific KST1 promoter. Stomata are found on the style, sepal, and anther of the closed flower and on ovules from the stage of anthesis. It has previously been shown that hexokinase (HXK) mediates sugar-sensing in leaf guard cells and stimulates stomatal closure. The activity and response of citrus fruit stomata to sugar-sensing by HXK was examined using plants that express HXK under the KST1 promoter. Those plants are referred to as GCHXK plants. The transpiration of young green GCHXK citrus fruits was significantly reduced, indicating that their stomata respond to sugar similar to leaf stomata. Toward fruit maturation, fruit stomata are plugged and stop functioning, which explains why WT and GCHXK mature yellow fruits exhibited similar water loss. Seeds of the GCHXK plants were smaller and germinated more slowly than the WT seeds. We suggest that the stomata of young green citrus fruits, but not mature yellow fruits, respond to sugar levels via HXK and that fruit stomata are important for proper seed development.

4.
Plant J ; 96(2): 343-357, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044900

RESUMO

The sugar content of Solanum lycopersicum (tomato) fruit is a primary determinant of taste and quality. Cultivated tomato fruit are characterized by near-equimolar levels of the hexoses glucose and fructose, derived from the hydrolysis of translocated sucrose. As fructose is perceived as approximately twice as sweet as glucose, increasing its concentration at the expense of glucose can improve tomato fruit taste. Introgressions of the FgrH allele from the wild species Solanum habrochaites (LA1777) into cultivated tomato increased the fructose-to-glucose ratio of the ripe fruit by reducing glucose levels and concomitantly increasing fructose levels. In order to identify the function of the Fgr gene, we combined a fine-mapping strategy with RNAseq differential expression analysis of near-isogenic tomato lines. The results indicated that a SWEET protein was strongly upregulated in the lines with a high fructose-to-glucose ratio. Overexpressing the SWEET protein in transgenic tomato plants dramatically reduced the glucose levels and increased the fructose : glucose ratio in the developing fruit, thereby proving the function of the protein. The SWEET protein was localized to the plasma membrane and expression of the SlFgr gene in a yeast line lacking native hexose transporters complemented growth with glucose, but not with fructose. These results indicate that the SlFgr gene encodes a plasma membrane-localized glucose efflux transporter of the SWEET family, the overexpression of which reduces glucose levels and may allow for increased fructose levels. This article identifies the function of the tomato Fgr gene as a SWEET transporter, the upregulation of which leads to a modified sugar accumulation pattern in the fleshy fruit. The results point to the potential of the inedible wild species to improve fruit sugar accumulation via sugar transport mechanisms.


Assuntos
Variação Genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Açúcares/metabolismo , Frutose/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Glucose/metabolismo , Hexoses/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo
5.
PLoS One ; 12(8): e0182334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787452

RESUMO

Metabolic enzymes have been found to play roles in plant development. Sucrose synthase (SUS) is one of the two enzyme families involved in sucrose cleavage in plants. In tomato, six SUS genes have been found. We generated transgenic tomato plants with RNAi suppression of SlSUS1, SlSUS3 and SlSUS4 genes. Independent transgenic lines with RNAi suppression of more than one SUS gene exhibited morphological effects on their cotyledons and leaf structure, but there were no significant effects on their carbohydrate levels, demonstrating that SUS has a developmental function, in addition to its metabolic function. Shoot apices of the transgenic lines showed elevated expression of JAGGED (JAG) and the auxin transporter PIN1. In a PIN1-GFP fusion reporter/SUS-RNAi hybrid, PIN1-GFP patterns were altered in developing leaves (as compared to control plants), indicating that SlSUS suppression alters auxin signaling. These results suggest possible roles for SUS in the regulation of plant growth and leaf morphology, in association with the auxin-signaling pathway.


Assuntos
Glucosiltransferases/genética , Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Interferência de RNA , Transdução de Sinais/genética , Solanum lycopersicum/citologia , Solanum lycopersicum/enzimologia , Regulação da Expressão Gênica de Plantas/genética , Glucosiltransferases/deficiência , Isoenzimas/deficiência , Isoenzimas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , beta-Glucosidase/genética
6.
Plant J ; 91(2): 325-339, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28390076

RESUMO

Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration.


Assuntos
Aquaporinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Hexoquinase/genética , Folhas de Planta/fisiologia , Açúcares/metabolismo , Aquaporinas/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucose/farmacologia , Hexoquinase/metabolismo , Células do Mesofilo/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas
7.
New Phytol ; 209(4): 1484-95, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26467542

RESUMO

Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter. GUS staining indicated SlFRK3 expression in vascular tissues of the leaves and stems, including cambium, differentiating xylem, young xylem fibers and phloem companion cells. Suppression of SlFRK3 reduced the stem xylem area, stem and root water conductance, and whole-plant transpiration, with minor effects on plant development. However, suppression of SlFRK3 accompanied by partial suppression of SlFRK2 induced significant growth-inhibition effects, including the wilting of mature leaves. Grafting experiments revealed that these growth effects are imposed primarily by the leaves, whose petioles had unlignified, thin-walled xylem fibers with collapsed parenchyma cells around the vessels. A cross between the SlFRK2-antisense and SlFRK3-RNAi lines exhibited similar wilting and anatomical effects, confirming that these effects are the result of the combined suppression of SlFRK3 and SlFRK2. These results demonstrate a role of the plastidic SlFRK3 in xylem development and hydraulic conductance.


Assuntos
Frutoquinases/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Solanum lycopersicum/enzimologia , Xilema/enzimologia , Transporte Biológico , Biomassa , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Fenótipo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Solubilidade , Água , Xilema/fisiologia
8.
BMC Plant Biol ; 15: 274, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553015

RESUMO

BACKGROUND: Melon fruit flesh color is primarily controlled by the "golden" single nucleotide polymorhism of the "Orange" gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, ß-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines. RESULTS: Pooling together F3 families that share same fruit flesh color and thus the same CmOr allelic variation, normalized traits unrelated to CmOr allelic variation. RNA sequencing analysis of these bulks enabled the identification of differentially expressed genes. These genes were clustered into functional groups. The relatively enriched functional groups were those involved in photosynthesis, RNA and protein regulation, and response to stress. CONCLUSIONS: The differentially expressed genes and the enriched processes identified here by bulk segregant RNA sequencing analysis are likely part of the regulatory network of CmOr. Our study demonstrates the resolution power of bulk segregant RNA sequencing in identifying genes related to commercially important traits and provides a useful tool for better understanding the mode of action of CmOr gene in the mediation of carotenoid accumulation.


Assuntos
Cucumis melo/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transcriptoma , beta Caroteno/metabolismo , Cucumis melo/metabolismo , Frutas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
9.
Nat Commun ; 5: 4026, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898284

RESUMO

Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.


Assuntos
Cucumis melo/genética , Cucumis sativus/genética , Frutas/química , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ácido Cítrico/análise , Cucumis melo/química , Cucumis sativus/química , Frutas/genética , Concentração de Íons de Hidrogênio , Solanum lycopersicum/química , Malatos/análise
10.
Tree Physiol ; 31(5): 519-30, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21571726

RESUMO

Olive (Olea europaea) has a very high tendency for year-to-year deviation in yield (alternate bearing), which has a negative economic impact on the olive oil industry. Among possible reasons for alternate bearing, depletion of stored carbohydrates (CHO) during the On-year (high yield) has often been mentioned. The objective of the present study was to verify the role of CHO reserves, as a cause or effect, in the alternate bearing of intensively cultivated olives. A monthly survey of soluble sugar and starch concentrations in the leaves, branches, bark and roots of On- and Off-trees (cv. Barnea) was carried out during a complete reproductive cycle from November 2005 to October 2006. Carbohydrate concentration in the sapwood was determined in January, as well as an estimate of whole-tree biomass. The trunk and limbs possess the largest portion of CHO reserves. The influence of reduced fruit load on CHO reserves was also investigated. Starch, mannitol and sucrose concentrations increased from December to March in all tissues, and then declined along with fruit development. Leaves, branches and bark have a significant role in CHO storage, whereas roots accumulated the lowest CHO concentrations. However, fluctuations in reserve content suggested considerable involvement of roots in the CHO budget. Nevertheless, there were no meaningful differences in the annual pattern of CHO concentration between On- and Off-trees. Even a 75-100% reduction in fruit number brought about only a minor, sluggish increase in CHO content, though this was more pronounced in the roots. Carbohydrate reserves were not depleted, even under maximum demands for fruit and oil production. It is concluded that in olives, the status of CHO reserves is not a yield determinant. However, they may play a significant role in the olive's survival strategy, ensuring tree recovery in the unpredictable semiarid Mediterranean environment. This suggests that CHO reserves in olive act like an active sink, challenging the common concept regarding the regulation of CHO reserves in plants.


Assuntos
Metabolismo dos Carboidratos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Olea/crescimento & desenvolvimento , Olea/metabolismo , Israel , Manitol/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estações do Ano , Amido/metabolismo , Sacarose/metabolismo
11.
Plant Mol Biol ; 76(1-2): 1-18, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21387125

RESUMO

The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.


Assuntos
Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Sacarose/metabolismo , Análise por Conglomerados , Cucumis melo/crescimento & desenvolvimento , Enzimas/classificação , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Redes e Vias Metabólicas/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Solubilidade , Sacarose/química
12.
J Econ Entomol ; 103(2): 228-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20429432

RESUMO

Intensive activity of honey bees, Apis mellifera L., is essential for high fruit set in avocado, Persea americana Mill., orchards, but even when hives are located inside the orchard, many bees still search for alternative blooms. We tested for a possible genetic component for a preference of avocado bloom relative to competing bloom. The honey from each hive was extracted at the end of the avocado bloom and the concentration of perseitol, a carbohydrate that is unique to avocado, was analyzed as a measure for avocado foraging. During the first year, five bee strains were compared in three different sites in Israel. Significant differences were found between strains in honey perseitol concentrations, suggesting differences in their efficiency as avocado pollinators, although these differences were site dependent. At two sites, colonies with the highest and lowest perseitol concentrations were selected as parental "high" and "low" lines. Queens were raised from the selected colonies and were instrumentally inseminated by drones from other colonies of this line. During the second and third years, colonies with inseminated queens were introduced to the avocado orchards, together with the selected colonies still surviving from the previous year. Colonies of the high line had greater perseitol concentrations than those of the low line. Selected colonies that survived from the previous year performed consistently vis-à-vis perseitol concentration, in the second year of testing. Heritability value of 0.22 was estimated based on regression of offspring on midparent. The results reveal a heritable component for willingness of honey bees to collect avocado nectar.


Assuntos
Abelhas/genética , Comportamento Animal/fisiologia , Cruzamento , Persea/fisiologia , Néctar de Plantas/fisiologia , Seleção Genética , Animais , Abelhas/fisiologia , Néctar de Plantas/química
13.
Biochem J ; 428(2): 201-12, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20236089

RESUMO

The enzyme AGPase [ADP-Glc (glucose) pyrophosphorylase] catalyses a rate-limiting step in starch synthesis in tomato (Solanum lycopersicon) fruit, which undergoes a transient period of starch accumulation. It has been a generally accepted paradigm in starch metabolism that the enzyme naturally functions primarily as a heterotetramer comprised of two large subunits (L) and two small subunits (S). The tomato genome harbours a single gene encoding S and three genes for L proteins, which are expressed in both a tissue- and time-specific manner. In the present study the allosteric contributions of the different L subunits were compared by expressing each one in Escherichia coli, in conjunction with S and individually, and characterizing the resulting enzyme activity. Our results indicate different kinetic characteristics of the tomato L1/S and L3/S heterotetramers. Surprisingly, the recombinant L3 protein was also active when expressed alone and size-exclusion and immunoblotting showed that it functioned as a monomer. Subunit interaction modelling pointed to two amino acids potentially affecting subunit interactions. However, directed mutations did not have an impact on subunit tetramerization. These results indicate a hitherto unknown active role for the L subunit in the synthesis of ADP-Glc.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , Solanum lycopersicum/enzimologia , Western Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Cinética , Solanum lycopersicum/genética , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Massas em Tandem
14.
Planta ; 224(6): 1465-79, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16770584

RESUMO

Tomato plants (Solanum lycopersicum) harboring the allele for the AGPase large subunit (AgpL1) derived from the wild species Solanum habrochaites (AgpL1 ( H )) are characterized by higher AGPase activity and increased starch content in the immature fruit, as well as higher soluble solids in the mature fruit following the breakdown of the transient starch, as compared to fruits from plants harboring the cultivated tomato allele (AgpL1 ( E )). Comparisons of AGPase subunit gene expression and protein levels during fruit development indicate that the increase in AGPase activity correlates with a prolonged expression of the AgpL1 gene in the AgpL1 ( H ) high starch line, leading to an extended presence of the L1 protein. The S1 (small subunit) protein also remained for an extended period of fruit development in the AgpL1 ( H ) fruit, linked to the presence of the L1 protein. There were no discernible differences between the kinetic characteristics of the partially purified AGPase-L1(E) and AGPase-L1(H) enzymes. The results indicate that the increased activity of AGPase in the AgpL1 ( H ) tomatoes is due to the extended expression of the regulatory L1 and to the subsequent stability of the heterotetramer in the presence of the L1 protein, implying a role for the large subunit not only in the allosteric control of AGPase activity but also in the stability of the AGPase L1-S1 heterotetramer. The introgression line of S. lycopersicum containing the wild species AgpL1 ( H ) allele is a novel example of transgressive heterosis in which the hybrid multimeric enzyme shows higher activity due to a modulated temporal expression of one of the subunits.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Solanum lycopersicum/genética , Alelos , Sequência de Bases , Western Blotting , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Genes de Plantas , Glucose-1-Fosfato Adenililtransferase/metabolismo , Cinética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/crescimento & desenvolvimento , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA