Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Dev Dis ; 10(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233155

RESUMO

Peripartum cardiomyopathy (PPCM) is a rare form of acute onset heart failure that presents in otherwise healthy pregnant women around the time of delivery. While most of these women respond to early intervention, about 20% progress to end-stage heart failure that symptomatically resembles dilated cardiomyopathy (DCM). In this study, we examined two independent RNAseq datasets from the left ventricle of end-stage PPCM patients and compared gene expression profiles to female DCM and non-failing donors. Differential gene expression, enrichment analysis and cellular deconvolution were performed to identify key processes in disease pathology. PPCM and DCM display similar enrichment in metabolic pathways and extracellular matrix remodeling suggesting these are similar processes across end-stage systolic heart failure. Genes involved in golgi vesicles biogenesis and budding were enriched in PPCM left ventricles compared to healthy donors but were not found in DCM. Furthermore, changes in immune cell populations are evident in PPCM but to a lesser extent compared to DCM, where the latter is associated with pronounced pro-inflammatory and cytotoxic T cell activity. This study reveals several pathways that are common to end-stage heart failure but also identifies potential targets of disease that may be unique to PPCM and DCM.

2.
Respir Res ; 24(1): 22, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681830

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. AIM: To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls. METHODS: We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq). RESULTS: We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene. CONCLUSION: Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.


Assuntos
Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Humanos , Transcriptoma , Medula Óssea , Tecido Adiposo , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Diferenciação Celular
3.
Environ Microbiol ; 23(1): 405-414, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200490

RESUMO

Raphidiopsis raciborskii is an invasive bloom-forming cyanobacteria with the flexibility to utilize atmospheric and fixed nitrogen. Since nitrogen-fixation has a high requirement for iron as an ezyme cofactor, we hypothesize that iron availability would determine the success of the species under nitrogen-fixing conditions. This study compares the proteomic response of cylindrospermopsin-producing and non-toxic strains of R. racibroskii to reduced iron concentrations, under nitrogen-fixing conditions, to examine any strain-specific adaptations that might increase fitness under these conditions. We also compared their proteomic responses at exponential and stationary growth phases to capture the changes throughout the growth cycle. Overall, the toxic strain was more competitive under Fe-starved conditions during exponential phase, with upregulated growth and transport-related proteins. The non-toxic strain showed reduced protein expression across multiple primary metabolism pathways. We propose that the increased expression of porin proteins during the exponential growth phase enables toxic strains to persist under Fe-starved conditions with this ability providing a potential explanation for the increased fitness of cylindrospermoipsin-producing strains during unfavourable environmental conditions.


Assuntos
Cylindrospermopsis/metabolismo , Ferro/metabolismo , Aclimatação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Cylindrospermopsis/genética , Cylindrospermopsis/crescimento & desenvolvimento , Fixação de Nitrogênio , Proteômica
4.
Environ Microbiol ; 21(4): 1211-1223, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30689271

RESUMO

The cyanobacterium Raphidiopsis raciborskii is of environmental and social concern in view of its toxicity, bloom-forming characteristics and increasingly widespread occurrence. However, while availability of macronutrients and micronutrients such as N and Fe are critically important for the growth and metabolism of this organism, the physiological response of toxic and non-toxic strains of R. raciborskii to varying Fe and N availabilities remains unclear. By determining physiological parameters as a function of Fe and N availability, we demonstrate that R. raciborskii growth and N2 -fixing activity are facilitated at higher Fe availability under N2 -limited conditions with faster growth of the CS-506 (cylindrospermopsin-producing) strain compared with that of CS-509 (the non-toxic) strain. Radiolabelled Fe uptake assays indicated that R. raciborskii acclimated under Fe-limited conditions acquires Fe at significantly higher rates than under Fe replete conditions, principally via unchelated Fe(II) generated as a result of photoreduction of complexed Fe(III). While N2 -fixation of both strains occurred during both day and night, the CS-506 strain overall exhibited higher N2 -fixing and Fe uptake rates than the CS-509 strain under N-deficient and Fe-limited conditions. The findings of this study highlight that Fe availability is of significance for the ecological advantage of CS-506 over CS-509 in N-deficient freshwaters.


Assuntos
Cylindrospermopsis/efeitos dos fármacos , Compostos Férricos/farmacologia , Água Doce/microbiologia , Nitrogênio/farmacologia , Aclimatação , Cylindrospermopsis/metabolismo
5.
Appl Environ Microbiol ; 82(19): 5918-29, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474713

RESUMO

UNLABELLED: The hepatotoxin microcystin (MCYST) is produced by a variety of freshwater cyanobacterial species, including Microcystis aeruginosa Interestingly, MCYST-producing M. aeruginosa strains have been shown to outcompete their nontoxic counterparts under iron-limiting conditions. However, the reasons for this are unclear. Here we examined the proteomic response of M. aeruginosa PCC 7806 continuous cultures under different iron and growth regimes. Iron limitation was correlated with a global reduction in levels of proteins associated with energy metabolism and photosynthesis. These proteomic changes were consistent with physiological observations, including reduced chlorophyll a content and reduced cell size. While levels of MCYST biosynthesis proteins did not fluctuate during the study period, both intra- and extracellular toxin quotas were significantly higher under iron-limiting conditions. Our results support the hypothesis that intracellular MCYST plays a role in protecting the cell against oxidative stress. Further, we propose that extracellular MCYST may act as a signaling molecule, stimulating MCYST production under conditions of iron limitation and enhancing the fitness of bloom populations. IMPORTANCE: Microcystin production in water supply reservoirs is a global public health problem. Understanding the ecophysiology of hepatotoxic cyanobacteria, including their responses to the presence of key micronutrient metals such as iron, is central to managing harmful blooms. To our knowledge, this was the first study to examine proteomic and physiological changes occurring in M. aeruginosa continuous cultures under conditions of iron limitation at different growth rates.


Assuntos
Ferro/farmacologia , Microcistinas/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Disponibilidade Biológica , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ferro/farmacocinética , Microcystis/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Proteoma , Regulação para Cima/efeitos dos fármacos
6.
Environ Microbiol Rep ; 8(1): 3-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663762

RESUMO

A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist.


Assuntos
Toxinas Bacterianas/metabolismo , Cianobactérias/química , Cianobactérias/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Proteômica/métodos , Cianobactérias/metabolismo , Perfilação da Expressão Gênica/tendências , Genômica/tendências , Proteômica/tendências
7.
Environ Sci Technol ; 49(15): 9133-42, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26132788

RESUMO

Photochemical reduction of iron and iron uptake by Microcystis were investigated in a freshwater medium (pH 8) containing a range of calcium (Ca) and magnesium (Mg) ion concentrations (0.002-20 mM). In a medium containing the chelator ethylenediaminetetraacetic acid (EDTA), 50-fold increases in net photochemical formation rates of unchelated ferrous iron (Fe(II)') were observed as the concentration of calcium or magnesium metal (Me) was increased to exceed the concentration of EDTA. Kinetic modeling of iron transformation processes indicated that the facilitated Fe(II)' formation is attributed to Me-promoted photoreductive dissociation of the ferric iron-EDTA complex. In the medium containing Suwanee River fulvic acid, in contrast, the competitive effect of Me on photochemical Fe(II)' formation appears to be negligible due to the weak binding affinities of fulvic acid to Me. The cellular iron uptake rate in the EDTA-buffered system increased by ∼3-fold in the excess Me condition where the increased rate of photochemical Fe(II)' formation was observed, whereas the presence of Me resulted in a decrease in iron uptake rate in the fulvic acid system (by up to 5-fold). The decrease in iron uptake is likely caused by Me binding to iron transporters and other entities involved in intracellular iron transport. The findings of this study indicate a significant effect of Ca and Mg concentrations in natural waters on iron uptake by Microcystis, with the magnitude of effect depending strongly on ligand type.


Assuntos
Cálcio/farmacologia , Água Doce/microbiologia , Ferro/metabolismo , Magnésio/farmacologia , Processos Fotoquímicos , Fitoplâncton/metabolismo , Íons/metabolismo , Cinética , Microcystis/citologia , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Modelos Biológicos , Fitoplâncton/citologia , Fitoplâncton/efeitos dos fármacos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA