Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Chemosphere ; 364: 143031, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117088

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have been used for decades in a broad range of consumer products and industrial applications. A variety of waste and products containing PFAS inevitably end up at waste management facilities when they are no longer considered useful. Drainage water samples (n = 157) were collected from eight subsections at a waste management facility in Sweden and analyzed for 23 PFAS and extractable organofluorine (EOF). Two different sampling methods were used, grab sampling (n = 32, without filtration) and composite sampling (n = 8, produced by pooling 16 filtered samples taken at the same subsection). Although PFAS have been studied at waste sites, the information is scarce regarding how the concentrations and homologue profiles could differ within the sites. In this study, we investigated if composite sampling could be an alternative to grab sampling for PFAS monitoring purposes. Herein, the PFAS concentrations ranged from <1 to 22 µg/L; the grab samples showed systematic higher concentrations than their corresponding composite sample. Short-chain perfluoroalkyl sulfonic acids (C4 and C5) were the largest contributing sub-class, followed by short-chain perfluoroalkyl carboxylic acids (C4 to C6). EOF was measured up to approximately 140 µg/L F with 99% being unexplained by the fluorine mass balance analysis. The results from this study showed that both sampling methods were comparable for target analysis and that 11 compounds represented most of the PFAS concentrations. However, the discrepancy between the sampling methods was greater for EOF analysis and may be due to the preparation of composite samples and/or due to fluctuating discharges during the sampling period. Composite sampling was observed to be comparable to grab sampling for target analysis.

2.
Chemosphere ; : 143073, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39146992

RESUMO

Generally, activated carbons demonstrated a notable ability to capture long-chain PFAS, but exhibited relatively lower effectiveness for short-chain PFAS. Thirteen commercially available activated carbons in Japan underwent testing for their adsorption capacity of PFAS in water. The activated carbon derived from rice husk, Triporous™-PFAS, exhibited the highest adsorption capacity (over 95%) for PFAS from ultrashort-chain (perfluorocarbon chain: C1 for perfluorocarboxylic acid (PFCA) and C2 for perfluoroalkane sulfonic acid (PFSA)) to long-chain PFAS (C13 for PFCA and C10 for PFSA). An earlier lysimeter study highlighted Andosol, representative soil in Japan, as a potential medium for removing PFAS from irrigation water. Considering cultivating rice on Andosol fields and producing biochar from rice husks and rice straw, a new rice cultivation system is proposed. This system aims to facilitate continuous removal of PFAS from the environment in Asia. Japanese rice cultivation system produces not only rice but also biochar to remove PFAS from water circulation system. The total fluorine content in the tested activated carbon materials ranged from 0.18 - 38 µg g-1 F. Based on the results from background F blank and adsorption capacity, TriporousTM-PFAS-F was shown to be an option to lower the method detection limit for a proposed international standard method for measuring total PFAS.

3.
Environ Pollut ; 356: 124352, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871169

RESUMO

Waste management facilities are a known source for per- and polyfluoroalkyl substances (PFAS) to the environment. In this study, water samples from seven subsections within a waste management facility in Sweden were analyzed for PFAS and extractable organofluorine (EOF). Oxidative conversion was used to investigate how much PFAS precursors could contribute to the EOF. Out of the 23 analyzed PFAS, ten compounds accounted for a major proportion of the concentrations. Before oxidative conversion the ∑10PFAS were between 0.44 µg/L and 17 µg/L. The EOF ranged from 2 µg/L F up to 79 µg/L F. There was a greater difference in concentrations and profiles between the subsections in comparison to the four sampling dates at respective sampling point, suggesting different sources of PFAS from the waste. Oxidative conversion revealed presence of precursors by elevated concentrations of perfluoroalkyl acids after oxidation, which increased the explained EOF up to 25%. Seven samples from one sampling date were selected to investigate if other fluorinated compounds (inorganic anions, ultra-short-chain PFAS, and zwitterions) could be a part of the unexplained EOF fraction. The contribution of fluorine from tetrafluoroborate and hexafluorophosphate were equal or higher proportions than the ∑10PFAS. The presence of the ionic liquids tetrafluoroborate and hexafluorophosphate could originate from battery waste, due to their use as counter ions in batteries. Ultra-short-chain PFAS increased the explained EOF by an average of 8%, with trifluoroacetic acid and trifluoromethane sulfonic acid being the main contributors. However, the reported concentrations of ultra-short-chain PFAS, were underestimated due to low recovery by the additional washing step to remove inorganic fluoride for EOF analysis. The concentrations of zwitterions were low and increased the explained EOF by < 1%. Our results suggest that EOF, selected PFAS, oxidative conversion and anionic fluorinated substances give a better picture of PFAS contamination.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Suécia , Gerenciamento de Resíduos/métodos , Instalações de Eliminação de Resíduos
4.
Environ Sci Technol ; 57(48): 20159-20168, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934924

RESUMO

Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.


Assuntos
Anguilla , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Animais , Fluorocarbonos/análise , Água Subterrânea/química , Água , Flúor/análise , Flúor/química , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 57(38): 14330-14339, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37710968

RESUMO

The ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis. In this study, tap water samples (n = 39) from Shanghai were collected to assess the levels of EF/EOF, 35 target PFAS, two inorganic fluorinated anions (tetrafluoroborate (BF4-) and hexafluorophosphate (PF6-)), and novel PFAS through suspect screening and potential oxidizable precursors through oxidative conversion. The results showed that ultra-short PFAS were the largest contributors to target PFAS, accounting for up to 97% of ΣPFAS. To the best of our knowledge, this was the first time that bis(trifluoromethanesulfonyl)imide (NTf2) was reported in drinking water from China, and p-perfluorous nonenoxybenzenesulfonate (OBS) was also identified through suspect screening. Small amounts of precursors that can be oxidatively converted to PFCAs were noted after oxidative conversion. EF mass balance analysis revealed that target PFAS could only explain less than 36% of EF. However, the amounts of unexplained extractable fluorine were greatly reduced when BF4- and PF6- were included. These compounds further explained more than 44% of the EF, indicating the role of inorganic fluorinated anions in the mass balance analysis.


Assuntos
Água Potável , Fluorocarbonos , Flúor , China , Imidas
6.
Toxics ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37235230

RESUMO

Organofluorines occur in human serum as complex mixtures of known and unidentified compounds. Human biomonitoring traditionally uses targeted analysis to measure the presence of known and quantifiable per- and polyfluoroalkyl substances (PFAS) in serum, yet characterization of exposure to and quantification of PFAS are limited by the availability of methods and analytical standards. Studies comparing extractable organofluorine (EOF) in serum to measured PFAS using organofluorine mass balance show that measurable PFAS only explain a fraction of EOF in human serum and that other sources of organofluorine may exist. The gap in fluorine mass balance has important implications for human biomonitoring because the total body burden of PFAS cannot be characterized and the chemical species that make up unidentified EOF are unknown. Many highly prescribed pharmaceuticals contain organofluorine (e.g., Lipitor, Prozac) and are prescribed with dosing regimens designed to maintain a therapeutic range of concentrations in serum. Therefore, we hypothesize organofluorine pharmaceuticals contribute to EOF in serum. We use combustion ion chromatography to measure EOF in commercial serum from U.S. blood donors. Using fluorine mass balance, we assess differences in unexplained organofluorine (UOF) associated with pharmaceutical use and compare them with concentrations of organofluorine predicted based on the pharmacokinetic properties of each drug. Pharmacokinetic estimates of organofluorine attributable to pharmaceuticals ranged from 0.1 to 55.6 ng F/mL. Analysis of 44 target PFAS and EOF in samples of commercial serum (n = 20) shows the fraction of EOF not explained by Σ44 PFAS ranged from 15% to 86%. Self-reported use of organofluorine pharmaceuticals is associated with a 0.36 ng F/mL (95% CL: -1.26 to 1.97) increase in UOF, on average, compared to those who report not taking organofluorine pharmaceuticals. Our study is the first to assess sources of UOF in U.S. serum and examine whether organofluorine pharmaceuticals contribute to EOF. Discrepancies between pharmacokinetic estimates and EOF may be partly explained by differences in analytical measurements. Future analyses using EOF should consider multiple extraction methods to include cations and zwitterions. Whether organofluorine pharmaceuticals are classified as PFAS depends on the definition of PFAS.

7.
Environ Sci Technol ; 57(22): 8355-8364, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220884

RESUMO

The ban/elimination of legacy per- and polyfluoroalkyl substances (PFASs) has led to a dramatic increase in the production and use of various emerging PFASs over the past decade. However, trophodynamics of many emerging PFASs in aquatic food webs remain poorly understood. In this study, samples of seawaters and marine organisms including 15 fish species, 21 crustacean species, and two cetacean species were collected from the northern South China Sea (SCS) to investigate the trophic biomagnification potential of legacy and emerging PFASs. Bis(trifluoromethylsulfonyl)imide was found in seawater via suspect screening (concentration up to 1.50 ng/L) but not in the biota, indicating its negligible bioaccumulation potential. A chlorinated perfluorooctane sulfonate (PFOS) analytical interfering compound was identified with a predicted formula of C14H23O5SCl6- (most abundant at m/z = 514.9373). Significant trophic magnification was observed for 22 PFASs, and the trophic magnification factors of cis- and trans-perfluoroethylcyclohexane sulfonate isomers (1.92 and 2.25, respectively) were reported for the first time. Perfluorohexanoic acid was trophic-magnified, possibly attributed to the PFAS precursor degradation. The hazard index of PFOS was close to 1, implying a potential human health risk via dietary exposure to PFASs in seafood on the premise of continuous PFAS discharge to the SCS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Humanos , Cadeia Alimentar , Ácidos Alcanossulfônicos/análise , Água do Mar , China , Fluorocarbonos/análise
8.
Sci Total Environ ; 871: 161830, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716880

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of persistent organic contaminants of which some are toxic and bioaccumulative. Several PFAS can be formed from the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs) as well as hydrochlorofluorocarbons (HFCs) and other ozone-depleting chlorofluorocarbon (CFC) replacement compounds. Svalbard ice cores have been shown to provide a valuable record of long-range atmospheric transport of contaminants to the Arctic. This study uses a 12.3 m ice core from the remote Lomonosovfonna ice cap on Svalbard to understand the atmospheric deposition of PFAS in the Arctic. A total of 45 PFAS were targeted, of which 26 were detected, using supercritical fluid chromatography (SFC) tandem mass spectrometry (MS/MS) and ultra-performance liquid chromatography (UPLC) MS/MS. C2 to C11 perfluoroalkyl carboxylic acids (PFCAs) were detected continuously in the ice core and their fluxes ranged from 2.5 to 8200 ng m-2 yr-1 (9.51-16,500 pg L-1). Trifluoroacetic acid (TFA) represented 71 % of the total mass of C2 - C11 PFCAs in the ice core and had increasing temporal trends in deposition. The distribution profile of PFCAs suggested that FTOHs were likely the atmospheric precursor to C8 - C11 PFCAs, whereas C2 - C6 PFCAs had alternative sources, such as HFCs and other CFC replacement compounds. Perfluorooctanesulfonic acid (PFOS) was also widely detected in 82 % of ice core subsections, and its isomer profile (81 % linear) indicated an electrochemical fluorination manufacturing source. Comparisons of PFAS concentrations with a marine aerosol proxy showed that marine aerosols were insignificant for the deposition of PFAS on Lomonosovfonna. Comparisons with a melt proxy showed that TFA and PFOS were mobile during meltwater percolation. This indicates that seasonal snowmelt and runoff from post-industrial accumulation on glaciers could be a significant seasonal source of PFAS to ecosystems in Arctic fjords.

9.
Environ Int ; 171: 107640, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525896

RESUMO

With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today's analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organofluorine (EOF), which yields the total amount of organofluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organofluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoroacetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals.


Assuntos
Fluorocarbonos , Lontras , Ursidae , Animais , Animais Selvagens , Flúor/análise , Noruega
10.
Sci Total Environ ; 846: 157406, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850346

RESUMO

Thousands of per- and polyfluoroalkyl substances (PFAS) are on the global market, while only a minor proportion is monitored regularly in the environment. Wastewater treatment plants (WWTPs) have been suggested to be a point source for PFAS to the environment due to emission of effluent and sludge. In this study, 81 PFAS including two rarely studied perfluoroalkyl sulfonamide-based (FASA) copolymers were analyzed in sludge samples to understand the usage of PFAS in the society. Sludge samples (n = 28) were collected at four WWTPs in Sweden between 2004 and 2017. The total levels of 79 measured PFAS were between 50 and 1124 ng/g d.w. All sludge samples showed detectable levels of both C8- and C4-FASA-based copolymers. The concentrations of the FASA-based copolymers were proposed to be reported in fluorinated side-chain equivalents (FSC eq.), in order to compare the levels of the copolymers with the other neutral and anionic PFAS, as no authentic standards were available. The concentrations of the FASA-based copolymers in sludge were between 1.4 and 22 ng FSC eq./g d.w. A general predomination of precursor and intermediate compounds was observed. A lower contribution of perfluoroalkyl carboxylic acids was noted for the WWTPs more influenced by domestic emission when compared with more influenced by industrial emission. An overall declining trend in the total PFAS concentration was seen between the years 2004 and 2017. The present study observed a shift from the C8-based chemistry toward shorter chain lengths, included a declining trend for C8-FASA-based copolymer over the entire study period. These findings further demonstrate the occurrence of side-chain fluorinated copolymers in Sweden and that sludge is a useful matrix to reflect the usage of PFAS in society and the potential for environmental exposure.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Esgotos/química , Suécia , Águas Residuárias/química , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 846: 157453, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863582

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a diverse group of widely used anthropogenic chemicals that are environmentally persistent and bioaccumulative, especially in aquatic ecosystem. The heavily industrialized and urbanized Greater Bay Area in China represents a notable contamination source for PFASs, which may potentially influence the health of local oysters as a keystone species in local ecosystems and a popular seafood. In this study, samples of oysters and their surrounding waters were collected from the littoral zones of the Pearl River Estuary (PRE), China during winter 2020, where 44 PFASs, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFASs, and 17 PFAA precursors (or intermediates), were analyzed. Total PFAS concentrations ranged 13.8-58.8 ng/L in the dissolved phase, 3.60-11.2 ng/g dry weight (dw) in the suspended particulate matter (SPM), and 0.969-1.98 ng/g dw in the oysters. Most short-chain PFASs were present in the dissolved phase (>95%), while long-chain PFASs generally showed higher concentrations in the SPM. Log field-based bioconcentration factors (BCFs) of long-chain PFASs increased linearly (r = 0.95, p < 0.01) with increasing estimated log membrane-water (Dmw) and protein-water (Dpw) distribution coefficients. Perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA) exhibited higher measured BCFs than those estimated by their Dmw and Dpw. Considering the widespread occurrence of their precursors, the contribution of precursor transformation was likely to be a significant source of PFHxA and PFHpA. Oysters from the PRE littoral zones posed low risks to human health associated with PFAS consumption, which might be underestimated due to limited toxicity data available for PFAA precursors and emerging PFASs. This study sheds light on the practicality of applying oysters as biomonitors for timely PFAS monitoring in coastal environments.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ostreidae , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Bioacumulação , China , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Material Particulado/análise , Água , Poluentes Químicos da Água/análise
12.
Environ Sci Process Impacts ; 24(7): 1060-1070, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35687097

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have raised concerns due to their worldwide occurrence and adverse effects on both the environment and humans as well as posing challenges for monitoring. Further collection of information is required for a better understanding of their occurrence and the unknown fractions of the extractable organofluorine (EOF) not explained by commonly monitored target PFAS. In this study, eight pairs of raw and treated water were collected from drinking water treatment plants (DWTPs) around Taihu Lake in China and analyzed for EOF and 34 target PFAS. Mass balance analysis of organofluorine revealed that at least 68% of EOF could not be explained by target PFAS. Relatively higher total target concentrations were observed in 4 DWTPs (D1 to D4) when compared to other samples with the highest sum concentration up to 189 ng L-1. PFOA, PFOS and PFHxS were the abundant compounds. Suspect screening analysis identified 10 emerging PFAS (e.g., H-PFAAs, H-PFESAs and OBS) in addition to target PFAS in raw or treated water. The ratios PFBA/PFOA and PFBS/PFOS between previous and current studies showed significant replacements of short-chain to long-chain PFAS. The ratios of the measured PFAS concentrations to the guideline values showed that some of the treated drinking water exceeds guideline values, appealing for efforts on drinking water safety guarantee.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Água Potável/análise , Fluorocarbonos/análise , Humanos , Lagos/análise , Projetos Piloto , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 29(52): 78698-78710, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35699877

RESUMO

Indoor environments may impact human health due to chemical pollutants in the indoor air and house dust. This study aimed at comparing the bioavailability and distribution of PFOA following both an inhalation and an oral exposure to PFOA coated house dust in rats. In addition, extractable organofluorine (EOF) was measured in different tissue samples to assess any potential influence of other organofluorine compounds in the experimental house dust. Blood samples were collected at sequential time points after exposure and at the time of termination; the lungs, liver, and kidney were collected for quantification of PFOA and EOF. The concentration of PFOA in plasma increased rapidly in both exposure groups attaining a Cmax at 3 h post exposure. The Cmax following inhalation was four times higher compared to oral exposures. At 48 h post exposure, the levels of PFOA in the plasma, liver, and kidney were twice as high from inhalation exposures. This shows that PFOA is readily bioavailable and has a rapid systemic distribution following an inhalation or oral exposure to house dust coated with PFOA. The proportion of PFOA to EOF corresponded to 65-71% and 74-87% in plasma and tissues, respectively. The mass balance between EOF and target PFOA indicates that there might be other unknown PFAS precursor and/or fluorinated compounds that co-existed in the house dust sample that can have accumulated in rats.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Humanos , Ratos , Animais , Poeira/análise , Fluorocarbonos/análise , Disponibilidade Biológica , Poluentes Ambientais/análise
14.
Environ Sci Technol ; 56(12): 7986-7996, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35584306

RESUMO

Various per- and polyfluoroalkyl substances (PFASs) remain undiscovered and unexplored in the environment. The goals of this study were to discover new species of PFASs in effluent and surface waters from a fluorochemical industrial zone, and to assess their concentration, distribution, and temporal trends in the adjacent natural environment. In total, 83 emerging PFASs from 14 classes were identified, 22 of which were reported for the first time. Authentic standards were synthesized for 13 per- and polyfluoroalkyl ether carboxylic acids (PFECAs), thereby greatly expanding the scope of PFAS-targeted monitoring. The newly identified compounds accounted for 27%-95% of the total PFAS concentrations. Of note, a novel diether carboxylic acid, 2-[2-(trifluoromethoxy)hexafluoropropoxy]tetrafluoropropanoic acid (C7 HFPO-TA) was detected at an extremely high concentration in the fluorochemical zone effluent (447 000 ng/L) and at a median concentration in the fluorochemical zone surface water (670 ng/L), with detectable levels also found in the natural environment, that is, Wangyu River (23 ng/L) and Taihu Lake (5.6 ng/L). The distinct geographic distribution of C7 HFPO-TA suggests transport from the industrial point source to Taihu Lake via the Wangyu River. The concentration of C7 HFPO-TA in Taihu Lake, along with that of many other emerging PFASs, continued to grow in three sampling campaigns from 2016 to 2021. Considering the environmental persistence and toxicity of structurally similar PFECAs (e.g., HFPO-DA), studies on C7 HFPO-TA are urgently needed.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Ácidos Carboxílicos , China , Monitoramento Ambiental , Fluorocarbonos/análise , Lagos , Rios , Poluentes Químicos da Água/análise
15.
Chemosphere ; 302: 134720, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35487349

RESUMO

Side-chain fluorinated polymers are speculated to be potential precursors to other non-polymeric aliphatic per- and polyfluoroalkyl acids (PFAAs). Limited knowledge of environmental occurrence of this compound class is partly due to lack of structural information and authentic standards. In this study, two novel fluorinated compounds, suspected to be side-chain fluorinated copolymers used in two commercial technical mixtures (Scotchgard™ Pre-2002 formulation and Scotchgard™ Post-2002 formulation) were analyzed and characterized in order to provide information to facilitate detection and quantification. The commercial mixtures were analyzed using tandem mass spectrometry and high-resolution mass spectrometry; besides already reported C4- and C8-fluoroalkylsulfonamido (FASA) side-chains, a proposed structure was determined for the perfluorooctane (C8) sulfonamide-urethane copolymer in the Pre-2002 formulation. Structural isomers were also observed for C4- and C8-FASA-based copolymers. Total fluorine analysis revealed that the Scotchgard™ Pre-2002 Formulation contained a fluorine content of 0.5% and 1.8% for the Scotchgard™ Post-2002 Formulation. The equivalent FASA side-chain content was determined to be 0.8% for Pre-2002 and 3.1% for Post-2002. Both C4- and C8-FASA-based copolymers underwent hydrolysis and oxidation and were transformed to their respective perfluoroalkyl side chain, which suggest that transformation products can be analyzed for example after total oxidizable precursor (TOP) assay. Both compounds were shown to strongly sorb to sediment particles, which also gives indications about their environmental fate and transport pathways.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Flúor , Polímeros de Fluorcarboneto , Fluorocarbonos/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise
16.
Environ Int ; 159: 107035, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896670

RESUMO

The ubiquitous occurrence of a few per- and polyfluoroalkyl substances (PFAS) in humans and the environment has been previously reported. However, the number of PFAS humans and the environment are potentially exposed to is much higher, making it difficult to investigate every sample in detail. More importantly, recent studies have shown an increasing fraction of potentially unknown PFAS in human samples. A screening tool for identifying samples of concern that may contain high PFAS levels, to be studied more thoroughly, is needed. This study presents a simplified workflow to detect elevated PFAS levels using extractable organofluorine (EOF) analysis. A fluorine mass balance analysis on samples with high EOF, targeting 63 PFAS, can then confirm the PFAS contamination. Whole blood samples from a cohort of individuals with historical drinking water contamination from firefighting foams (n = 20) in Ronneby (Sweden) and a control group (n = 9) with background exposure were used as a case study. The average EOF concentration in the Ronneby group was 234 ng/mLF (<107-592 ng/mLF) vs 24.8 ng/mLF (17.6-37.8 ng/mL F) in the control group. The large difference (statistically significant, p < 0.05) in the EOF levels between the exposed and control groups would have made it possible to identify samples with high PFAS exposure only using EOF data. This was confirmed by target analysis, which found an average ∑PFAS concentration of 346 ng/mL in the exposed group and 7.9 ng/mL in the control group. The limit of quantification for EOF analysis (up to 107 ng/mLF using 0.5 mL whole blood) did not allow for the detection of PFAS levels in low or sub parts per billion (ng/mL) concentrations, but the results indicate that EOF analysis is a suitable screening method sensitive enough to detect elevated/significant/exposure above background levels by known or unknown PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluoretos/análise , Flúor/análise , Humanos , Suécia , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 56(1): 251-259, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927432

RESUMO

Perfluoroalkyl acids (PFAAs) are highly persistent chemicals that are ubiquitously found in the environment. The atmospheric degradation of precursor compounds has been identified as a source of PFAAs and might be an important pathway for contamination. Lake Vättern is one of Sweden's largest lakes and is an important source for drinking water. In addition to contamination via atmospheric deposition, the lake is subject to several potential contamination sources via surface water inflow. The relevance of different sources is not well understood. A mass balance of selected PFAAs was assembled based on measured concentrations in atmospheric deposition, surface water from streams that constitute the main inflow and outflow, and surface water in the lake. The largest input was seen for trifluoroacetic acid (150 kg/year), perfluoropropanoic acid (1.6 kg/year), perfluorobutanoic acid (4.0 kg/year), and perfluoro-octanoic acid (1.5 kg/year). Both atmospheric deposition and surface water inflow was found to be important input pathways. There was a positive correlation between the input of most perfluoroalkyl carboxylic acids via atmospheric deposition and global radiation and between the input via surface water inflow and catchment area. These findings highlight the importance of atmospheric oxidation of volatile precursor compounds for contamination in surface waters.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Fluorocarbonos/análise , Lagos , Ácido Trifluoracético , Poluentes Químicos da Água/análise
18.
J Environ Sci (China) ; 111: 263-272, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949356

RESUMO

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant (POP) and emergent contaminant that are widespread in the environment. Understanding the mechanisms controlling the distribution of PFOS and its isomers between hydrargillite and the water phase is important in order to study their redistribution and mobility in the environment. This study investigated the effects of pH, humic acid, fulvic acid and Na2SO4 on sorption of PFOS isomers to hydrargillite. A mixture of PFOS isomers was spiked into water and hydrargillite was added to the system and shaken for one day; the system was tested with different aqueous composition. Concentrations of PFOS isomers in the aqueous phase were quantified using an ultra-performance liquid chromatograph coupled to a triple quadrupole mass spectrometer. Our results showed that the distribution coefficients of PFOS isomers were found to be 0.76, 0.71, 0.93 and 0.90 at pH 6.5, for 3-/4-/5- PFOS, 6-/2-PFOS, L-PFOS and total PFOS respectively. The distribution coefficients increased at lower pH and decreased at alkaline conditions. The presence of humic substances (HS) increased the sorption slightly at the environmental pH of 6.5, although a competition effect was observed during acidic conditions. A tendency of PFOS distribution to hydrargillite in the presence of Na2SO4 was like its behavior in the presence of HS although the mechanisms behind the sorption were interpreted differently. This study revealed that L-PFOS was readily sorbed when no other chemicals were added or in 20 mg/L FA or 100 mg/L Na2SO4. We suggest that an increase in PFOS sorption in the presence of HS may be due to hydrophobic mechanisms while Na2SO4 contributed to increased sorption through ionic strength effects.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Adsorção , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio
19.
Environ Sci Pollut Res Int ; 29(3): 4497-4507, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34409531

RESUMO

The sorption processes of persistent organic pollutants on microplastics particles are poorly understood. Therefore, the present study investigated the sorption processes of perfluorooctanesulfonate (PFOS) on polyethylene (PE) microplastic particles (MPs) which are representing a prominent environmental pollutant and one of the most abundant microplastic polymers in the aquatic environment, respectively. The focus was set on the investigation of the impact of the particle size on PFOS sorption using four different PE MPs size ranges. The sorption kinetics for 6 months was studied with one selected size range of PE MPs. Besides, the desorption of PFOS from PE MPs under simulated digestive conditions was carried out by using artificial gut fluid mimicking the intestinal juice of fish. The investigation of the size effects of particles over 6 months demonstrated a linear increase of PFOS concentration sorbed onto PE with a decrease of the particle size. Thus, our findings implicate efficient sorption of PFOS onto PE MPs of different sizes. The results showed that PFOS desorbed from the PE MPs into the artificial gut fluid with a rate of 70 to 80%. Besides, a longer exposure of PE MPs to PFOS leads to a higher concentration adsorbed by PE MPs, which may favor the ingestion of higher concentration of PFOS, and thus represents a higher risk to transfer relevant concentrations of PFOS during digestion.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Ácidos Alcanossulfônicos , Animais , Fluorocarbonos , Cinética , Plásticos , Polietileno , Poluentes Químicos da Água/análise
20.
Chemosphere ; 288(Pt 1): 132440, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34626648

RESUMO

An inter-laboratory trial (ILT) has been performed to validate ISO 21675 method for the measurement of per-and polyfluoroalkyl substances (PFAS) in water samples using solid phase extraction method and high-performance liquid chromatography-tandem mass spectrometry. A total of twenty-seven laboratories from eleven countries (Belgium: 1, Canada: 2, China: 2, France: 1, Germany: 3, Italy: 2, Japan: 6, Netherlands: 2, South Korea: 1, Sweden: 4, and USA: 3) participated in the ILT. Results of the homogeneity of ILT water samples showed that the repeatability tended to increase from short-chain to long-chain of PFAS. Results of stability of PFAS in Milli-Q water stored at 5 ± 3 °C ranged from 75% to 121% including those ultra-short-chain compounds, except for N-MeFOSA (44%), N-EtFOSA (44%), and 8:2 FTOH (30%) at 168 days. As for stability of PFAS in environmental waters, they were in acceptable range (between 70 and 125%) for most of PFAS, except for 8:2 FTUCA in the river water, seawater, and wastewater, and 8:2 FTSA and 8:2 FTOH in wastewater. Based on the performance data (reproducibility (CVR): <40%, recoveries (η): 70-125%) of the ILT, current ISO 21675 is validated for up to 30 PFAS depending on water type. Novel analytical techniques namely "In-situ Solid Phase Extraction" and the "Purge and Trap Extraction" were developed and explored to measure volatile PFAS. Preliminary results showed acceptable recoveries for volatile PFAS such as fluorotelomer alcohols and iodides in spiked Milli-Q water.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Controle de Qualidade , Reprodutibilidade dos Testes , Extração em Fase Sólida , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA