Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
ACS Appl Mater Interfaces ; 13(5): 6411-6420, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33513004

RESUMO

In this study, a highly sensitive trilayer photodetector using Co-doped ZnFe2O4 thin films annealed at 400 °C was synthesized successfully. Trilayer-photodetector devices with a film stack of 5 at % Co-doped-zinc-ferrite-thin-film/indium-tin-oxide on p+-Si substrates were fabricated by radio-frequency sputtering. The absorbance spectra, photoluminescence spectra, transmission electron microscopy images, and I-V characteristics under various conditions were comprehensively investigated. The outstanding performance of trilayer-photodector devices was measured, including a high photosensitivity of 181 and a fast photoresponse time with a rise time of 10.6 ms and fall time of 9.9 ms under 630 nm illumination. Therefore, the Co-doped ZnFe2O4 thin film is favorable for potential photodetector applications in visible light regions.

2.
ACS Appl Mater Interfaces ; 13(1): 570-579, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33370086

RESUMO

In lithium-ion batteries (LIBs), conversion-based electrodes such as transition-metal oxides and sulfides exhibit promising characteristics including high capacity and long cycle life. However, the main challenge for conversion electrodes to be industrialized remains on voltage hysteresis. In this study, Mn3O4 powder was used as an anode material for LIBs to investigate the root cause of the hysteresis. First, the electrochemical reaction paths were found to be dominated by Mn/Mn2+ redox couple after the first lithiation from galvanostatic charging/discharging (GCD) and cyclic voltammetry (CV) measurements. Then, the voltage hysteresis was proposed to be composed of reaction overpotential (∼0.373 V) and intrinsic overpotential (∼0.377 V), which were related to the diffusion behaviors according to CV, galvanostatic intermittent titration technique (GITT), and electrochemical impedance spectroscopy (EIS) analyses. Furthermore, results revealed that the formation of disparate phase distribution during lithiation and delithiation could be the root cause of the intrinsic overpotential of Mn3O4. These results were based on ultrahigh-resolution transmission electron microscopy (UHRTEM) and molecular dynamics (MD) simulation. It was expected that improving the diffusion behaviors of the systems could eliminate the voltage hysteresis of Mn3O4. In summary, this paper provides an explicit insight into the hysteresis for conversion-based Mn3O4 that could also be applied to other oxide systems and very crucial to reduce energy loss for commercializing oxides as anode materials in LIBs.

3.
Phys Chem Chem Phys ; 18(8): 5905-9, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26856872

RESUMO

Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 µm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

4.
Analyst ; 141(1): 279-84, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26588673

RESUMO

A novel 3D carbon nanotube (CNT) microelectrode was developed through direct growth of CNTs on a gold pin-shaped 3D microelectrode at a low temperature (400 °C) for applications in neural and cardiac recording. With an electroplated Ni catalyst layer covering the entire surface of the pin-shaped structure, CNTs were synthesized on a 3D microelectrode by catalytic thermal chemical vapor deposition (CVD). According to the analyses by electrochemical impedance spectroscopy, the impedance of 3D microelectrodes after CNT growth and UV/O3 treatment decreased from 9.3 Ω mm(-2) to 1.2 Ω mm(-2) and the capacitance increased largely from 2.2 mF cm(-2) to 73.3 mF cm(-2). The existence of UVO3-treated CNT led to a large improvement of interfacial capacitance, contributing to the decrease of impedance. The electrophysiological detection capability of this 3D CNT microelectrode was demonstrated by the distinguished P waves, QRS complex and T waves in the electrocardiogram of the zebrafish heart and the action potential recorded from individual rat hippocampal neurons. The compatibility of integration with ICs, high resolution in space, electrophysiological signals, and non-invasive long-term recording suggest that the 3D CNT microelectrode exhibits promising potential for applications in electrophysiological research and clinical trials.


Assuntos
Eletrofisiologia/instrumentação , Nanotubos de Carbono/química , Potenciais de Ação , Animais , Eletroquímica , Desenho de Equipamento , Coração/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Microeletrodos , Neurônios/citologia , Ratos , Peixe-Zebra/fisiologia
5.
Microsc Microanal ; 21(6): 1639-1643, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26381450

RESUMO

We demonstrate direct electron beam writing of a nano-scale Cu pattern on a surface with a thin aqueous layer of CuSO4 solution. Electron beams are highly maneuverable down to nano-scales. Aqueous solutions facilitate a plentiful metal ion supply for practical industrial applications, which may require continued reliable writing of sophisticated patterns. A thin aqueous layer on a surface helps to confine the writing on the surface. For this demonstration, liquid sample holder (K-kit) for transmission electron microscope (TEM) was employed to form a sealed space in a TEM. The aqueous CuSO4 solution inside the sample holder was allowed to partially dry until a uniform thin layer was left on the surface. The electron beam thus reduced Cu ions in the solution to form the desired patterns. Furthermore, the influence of e-beam exposure time and CuSO4(aq) concentration on the Cu reduction was studied in this work. Two growth stages of Cu were shown in the plot of Cu thickness versus e-beam exposure time. The measured Cu reduction rate was found to be proportional to the CuSO4(aq) concentration.

6.
Nanoscale ; 7(3): 901-7, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25470451

RESUMO

This study reports successful synthesis of non-stoichiometric single-crystal W18O49-xSx nanowires for photosensors with a high absorption rate (>83%) across a wide spectrum (300-2000 nm), a high internal gain (G = 10(6)-10(7)) and a relatively fast response time (approximately 1-3 s). In addition, the correlation between the photoconductivity gain (G) and the surface-to-volume ratio of non-stoichiometric single-crystal W18O49-xSx nanowires was studied. The surface-to-volume ratio and non-stoichiometric material of W18O49-xSx contributed to the photoconductivity gain; hence, the nanowires are favorable for photosensor devices. The wide spectrum obtained also suggests their extensive applications in numerous fields.

7.
ACS Appl Mater Interfaces ; 6(14): 11589-97, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24955653

RESUMO

The enhanced lifetime stability for the carbon nanotubes (CNTs) by coating hybrid granular structured diamond (HiD) films on Au-decorated CNTs/Si using a two-step microwave plasma enhanced chemical vapor deposition process was reported. Electron field emission (EFE) properties of HiD/Au/CNTs emitters show a low turn-on field (E0) of 3.50 V/µm and a high emission current density (Je) of 0.64 mA/cm(2) at an applied field of 5.0 V/µm. There is no notable current degradation or fluctuation over a period of τ(HiD/Au/CNTs) = 360 min for HiD/CNTs EFE emitters tested under a constant current of 4.5 µA. The robustness of the HiD/CNTs EFE emitter is overwhelmingly superior to that of bare CNTs EFE emitters (τ(CNTs) = 30 min), even though the HiD/Au/CNTs do not show the same good EFE properties as CNTs, which are E0 = 0.73 V/µm and Je = 1.10 mA/cm(2) at 1.05 V/µm. Furthermore, the plasma illumination (PI) property of a parallel-plate microplasma device fabricated using the HiD/Au/CNTs as a cathode shows a high Ar plasma current density of 1.76 mA/cm(2) at an applied field of 5600 V/cm with a lifetime of plasma stability of about 209 min, which is markedly better than the devices utilizing bare CNTs as a cathode. The CNT emitters coated with diamond films possessing marvelous EFE and PI properties with improved lifetime stability have great potential for the applications as cathodes in flat-panel displays and microplasma display devices.

8.
Lab Chip ; 13(18): 3578-87, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23743812

RESUMO

A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.


Assuntos
Materiais Biomiméticos/química , Fígado/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Sobrevivência Celular , Citocromo P-450 CYP1A1/metabolismo , Eletrodos , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Fígado/metabolismo , Medicina Regenerativa , Engenharia Tecidual
9.
Biosens Bioelectron ; 41: 898-902, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23083911

RESUMO

A biosensor was fabricated by growing carbon nanotubes (CNTs) directly on a polyimide flexible substrate at low temperatures (≤400 °C). A biocompatible polymer (poly(para-xylylene), parylene) was subsequently coated on the surface without CNTs as an insulator for future applications of flexible biosensors in in vivo sensing. The feasibility of the CNT flexible biosensor was demonstrated by quantitatively detecting human serum albumin (HSA). The CNT surface was modified with functional groups using UV-ozone, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and treated with N-hydroxysuccinimide (NHS) to improve the biocompatibility for the conjugation of protein. In addition, anti-HSA (AHSA) was used to capture HSA specifically, and bovine serum albumin (BSA) was applied to block the non-specific sites. The electrical properties of the biosensors applied with various HSA concentrations were measured and quantified using an electrochemical impedance spectroscopy system under AC conditions. The detection limit of the biosensor for HSA detection was approximately 3×10(-11) mg/ml. The proposed sensor has considerable potential for future application in wearable biosensors and implant detection.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Cristalização/métodos , Imunoensaio/instrumentação , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Albumina Sérica/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Nanotecnologia/instrumentação , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
J Mater Chem B ; 1(40): 5389-5392, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261244

RESUMO

A colorimetric immunoassay biosensor is developed employing CNTs as a label material, which allowed direct observation of the sensing result by the naked eye. Implemented for HSA, the detection limit is 3 × 10-5 mg ml-1 when characterized using UV-Vis.

11.
Anal Chem ; 84(15): 6312-6, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22816618

RESUMO

Transmission electron microscopy (TEM) is a unique and powerful tool for observation of nanoparticles. However, due to the uneven spatial distribution of particles conventionally dried on copper grids, TEM is rarely employed to evaluate the spatial distribution of nanoparticles in aqueous solutions. Here, we present a microchip nanopipet with a narrow chamber width for sorting nanoparticles from blood and preventing the aggregation of the particles during the drying process, enabling quantitative analysis of their aggregation/agglomeration states and the particle concentration in aqueous solutions. This microchip is adaptable to all commercial TEM holders. Such a nanopipet proves to be a simple and convenient sampling device for TEM image-based quantitative characterization.


Assuntos
Microscopia Eletrônica de Transmissão , Nanopartículas/análise , Ouro/química , Humanos , Dispositivos Lab-On-A-Chip , Nanotecnologia/instrumentação , Plasma/química , Polietilenoglicóis/química
12.
Langmuir ; 28(19): 7428-35, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22524463

RESUMO

The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala substitution at either F34, V45, C87, G189, T196, or Y197 resulted in a significant reduction in biofilm formation. The E. coli strain expressing MrkAG189A remained capable of producing a normal number of fimbriae. Although F34A, V45A, T196A, and Y197A substitutions expressed on E. coli strains produced sparse quantities of fimbriae, no fimbriae were observed on the cells expressing MrkAC87A. Further investigations of the mechanical properties of the MrkAG189A fimbriae with optical tweezers revealed that, unlike the wild-type fimbriae, the uncoiling force for MrkAG189A fimbriae was not constant. The MrkAG189A fimbriae also exhibited a lower enthalpy in the differential scanning calorimetry analysis. Together, these findings indicate that the mutant fimbriae are less stable than the wild-type. This study has demonstrated that the C-terminal ß strands of MrkA are required for the assembly and structural stability of fimbriae.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias/metabolismo , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/química , Biofilmes , Proteínas de Fímbrias/química , Estrutura Terciária de Proteína
13.
Biosens Bioelectron ; 34(1): 286-90, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22365362

RESUMO

In this study, a CdSe/ZnS quantum dot (QD)-based immunosensor using a simple optical system for human serum albumin (HSA) detection is developed. Monoclonal anti-HSA (AHSA) immobilized on 3-aminopropyltriethoxysilane (APTES)-modified glass was used to capture HSA specifically. Bovine serum albumin (BSA) was used to block non-specific sites. The solution, containing AHSA-QD complex prepared by mixing biotinylated polyclonal anti-HSA and streptavidin coated QD, was used to conjugate with the HSA molecules captured on AHSA/BSA/APTES-modified glass for the modification of HSA with QD. A simple optical system, comprising a diode laser (405 nm), an optical lens, a 515-nm-long pass filter, and an Si-photodiode, was used to detect fluorescence and convert it to photocurrent. The current intensity was determined by the amount of QD specifically conjugated with HSA, and was therefore HSA-concentration-dependent and could be used to quantify HSA concentration. The detection limit of the pure QD solution was ~3.5×10(-12) M, and the detection limit for the CdSe/ZnS QD-based immunosensor developed in this study was approximately 3.2×10(-5) mg/ml. This small optical biosensing system shows considerable potential for future applications of on-chip liver-function detection.


Assuntos
Técnicas Biossensoriais/métodos , Dispositivos Ópticos , Pontos Quânticos , Albumina Sérica/isolamento & purificação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Fluorescência , Humanos , Imunoensaio , Lasers , Limite de Detecção
14.
Biosens Bioelectron ; 28(1): 368-72, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21840200

RESUMO

In this study, electrical impedimetric biosensors composed of Au-electrodes were fabricated for the quantitative detection of human serum albumin (HSA), an essential biomarker of liver function. The Au-electrodes were fabricated via a single-step photolithography process, and can be easily integrated in biochips for assessing liver function in the future. The glass sensing surface between two adjacent Au-electrodes was modified with 3-aminopropyltriethoxysilane (APTES) to improve the biocompatibility for its subsequent binding to anti-human serum albumin (AHSA). The sensing surface without AHSA binding was blocked using skim milk powders, preventing possible non-specific bonding HSA conjugation. Biosensors were used to measure HSA concentration for liver function detection. The impedance between two adjacent Au-electrodes of the biosensors applied with various HSA concentrations was directly measured, and quantified using an electrochemical impedance spectroscopy system under AC conditions. The results of plotting both values in log scales indicated the impedance increased linearly with HSA conjugation increase. The limit of HSA detection was about 2'10(-4)mg/ml using the electrochemical impedimetric biosensor proposed in this work. This study demonstrates the feasibility of using electrochemical impedimetry as a bio-sensing mechanism to quantify human serum albumin concentration. The sensor proposed in this work also displays great potential for assessing liver function because of its simple detection mechanism, ease of biochip integration, and low cost.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Testes de Função Hepática/métodos , Albumina Sérica/análise , Anticorpos Imobilizados , Técnicas Biossensoriais/instrumentação , Eletrodos , Humanos , Albumina Sérica/química
15.
Biosens Bioelectron ; 26(10): 4124-32, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21536420

RESUMO

This paper reports the success of amino-functionalization on multi-walled carbon nanotubes (MWCNTs) to promote neuronal cells growth on MWCNT electrode for extracellular recording, attributed to the formation of positive charge of NH(2) molecules on their surfaces. Besides, the surface of MWCNT electrode becomes hydrophilic after amino-functionalization (AF-MWCNTs) which can enhance electrical conductivity because of lower MWCNT/electrolyte interfacial impedance and higher interfacial capacitance. Durability tests show that electrical characteristics of the MWCNTs treated by 2 wt% 1,4-diaminobutane solution (2 wt%-AF-MWCNTs) can last for at least six months in air ambient. The neural recording of crayfish shows that 2 wt%-AF-MWCNTs can provide better capability on detecting action potentials of caudal photoreceptor (CPR) interneuron compared to suction glass pipette from the evidence of a higher S/N ratio (126 versus 23). The amino-functionalized MWCNT electrode is feasible for long-term recording application according to the results of biocompatibility tests. As the MWCNTs were directly synthesized on Si-based substrates by catalyst-assisted thermal chemical vapor deposition (CVD) at a low temperature (400 °C), these self-aligned MWCNT electrodes could be friendly implemented in integrated circuits fabrications.


Assuntos
Nanotubos de Carbono , Neurogênese , Potenciais de Ação , Animais , Astacoidea , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Células Cultivadas , Condutividade Elétrica , Impedância Elétrica , Técnicas Eletroquímicas , Eletrodos , Hipocampo/citologia , Técnicas In Vitro , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Espectroscopia Fotoeletrônica , Ratos
16.
J Neural Eng ; 8(3): 034001, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474876

RESUMO

A variety of microelectrode arrays (MEAs) has been developed for monitoring intra-cortical neural activity at a high spatio-temporal resolution, opening a promising future for brain research and neural prostheses. However, most MEAs are based on metal electrodes on rigid substrates, and the intra-cortical implantation normally causes neural damage and immune responses that impede long-term recordings. This communication presents a flexible, carbon-nanotube MEA (CMEA) with integrated circuitry. The flexibility allows the electrodes to fit on the irregular surface of the brain to record electrocorticograms in a less invasive way. Carbon nanotubes (CNTs) further improve both the electrode impedance and the charge-transfer capacity by more than six times. Moreover, the CNTs are grown on the polyimide substrate directly to improve the adhesion to the substrate. With the integrated recording circuitry, the flexible CMEA is proved capable of recording the neural activity of crayfish in vitro, as well as the electrocorticogram of a rat cortex in vivo, with an improved signal-to-noise ratio. Therefore, the proposed CMEA can be employed as a less-invasive, biocompatible and reliable neuro-electronic interface for long-term usage.


Assuntos
Eletroencefalografia/instrumentação , Análise em Microsséries/instrumentação , Microeletrodos , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Animais , Astacoidea , Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Nanotubos de Carbono/ultraestrutura , Ratos
17.
Lab Chip ; 11(9): 1647-55, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21448485

RESUMO

We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work.


Assuntos
Eletrodos Implantados , Eletrofisiologia/instrumentação , Fibras Nervosas/fisiologia , Animais , Astacoidea , Contagem de Células , Fenômenos Eletrofisiológicos/fisiologia , Desenho de Equipamento , Ouro , Neurônios/citologia , Neurônios/fisiologia , Maleabilidade , Resistência ao Cisalhamento , Processamento de Sinais Assistido por Computador , Eletricidade Estática
18.
J Bacteriol ; 193(7): 1718-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21239584

RESUMO

This study investigated the structural and mechanical properties of Klebsiella pneumoniae type 3 fimbriae, which constitute a known virulence factor for the bacterium. Transmission electron microscopy and optical tweezers were used to understand the ability of the bacterium to survive flushes. An individual K. pneumoniae type 3 fimbria exhibited a helix-like structure with a pitch of 4.1 nm and a three-phase force-extension curve. The fimbria was first nonlinearly stretched with increasing force. Then, it started to uncoil and extended several micrometers at a fixed force of 66 ± 4 pN (n = 22). Finally, the extension of the fimbria shifted to the third phase, with a characteristic force of 102 ± 9 pN (n = 14) at the inflection point. Compared with the P fimbriae and type 1 fimbriae of uropathogenic Escherichia coli, K. pneumoniae type 3 fimbriae have a larger pitch in the helix-like structure and stronger uncoiling and characteristic forces.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Mecânica , Microscopia Eletrônica de Varredura , Conformação Proteica , Escherichia coli Uropatogênica/metabolismo , Fatores de Virulência
19.
Chemphyschem ; 12(4): 871-7, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20715044

RESUMO

For future all-soluble organic thin film transistor (OTFT) applications, a new soluble n-type air-stable perylene diimide derivative semiconductor material with (trifluoromethyl)benzyl groups (TC-PDI-F) is synthesized. The film is formed by spin-coating in air and optimized for OTFT fabrications. The transistor characteristics and air-stability of the TC-PDI-F OTFTs is measured to investigate the feasibility of using solution-processed TC-PDI-F for future OTFT applications. For all-solution OTFT process applications, the transistor characteristics are demonstrated by using TC-PDI-F as an n-type semiconductor material and liquid-phase-deposited SiO(2) (LPD-SiO(2) ) as a gate dielectric material. All processes (except material synthesis and electrode deposition) and electrical measurements are conducted in air.

20.
J Nanosci Nanotechnol ; 11(12): 10654-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408967

RESUMO

Performance of phase-change materials based on Ga-Te-Sb was found getting better with decreasing Te content in our earlier studies. We concerned much properties of Te-free, Sb-rich binary Ga-Sb, which has been known to possess extremely fast crystallization behavior. Non-isothermal and isothermal crystallization kinetics of amorphous Sb-rich Ga-Sb films were explored by temperature dependent electrical resistance measurements. The crystallization temperature (183 to 261 degrees C) increases with decreasing Sb content (91 to 77 at%). The activation energy and rate-factor vary with Sb contents and reach the maximum at Ga19Sb81. The kinetic exponent is smaller than 1.5 at Sb < 85 at% denoting that the mechanism is one-dimensional crystal-growth from nuclei. The temperature corresponding to 10-year data-retention, evaluated from films, is 180 degrees C (Ga19Sb81) and 137 degrees C (Ga13Sb87), respectively. We verified memory performance using test-devices made of Ga16Sb84 working at voltages with 100 ns pulse-width.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA