RESUMO
Methanol is a promising hydrogen carrier for fuel cell vehicles (FCVs) via methanol steam reforming (MSR) reaction. Ceria supported copper catalyst has attracted extensive attentions due to the extraordinary oxygen storage capacity and abundant oxygen vacancies. Herein, we developed a colloidal solution combustion (CSC) method to synthesize a porous Cu/CeO2(CSC) catalyst. Compared with Cu/CeO2 catalysts prepared by other methods, the Cu/CeO2(CSC) catalyst possesses highly dispersed copper species and abundant Cu+-Ov-Ce3+ sites at the copper-ceria interface, contributing to methanol conversion of 66.3 %, CO2 selectivity of 99.2 %, and outstanding hydrogen production rate of 490 mmol gcat-1 h-1 under 250 °C. The linear correlation between TOF values and Cu+-Ov-Ce3+ sites amount indicates the vital role of Cu+-Ov-Ce3+ sites in MSR reaction, presenting efficient ability in activation of water. Subsequently, a deep understanding of CSC method is further presented. In addition to serving as a hard template, the colloidal silica also acts as disperser between nanoparticles, enhancing the copper-ceria interactions and facilitating the generation of Cu+-Ov-Ce3+ sites. This study offers an alternative approach to synthesize highly dispersed supported copper catalysts.
RESUMO
Objective: To investigate the clinical efficacy of roxithromycin combined with azithromycin sequential therapy in the treatment of mycoplasma pneumoniae pneumonia in children. Methods: A retrospective study was conducted on 100 patients with mycoplasma pneumoniae pneumonia admitted to The First Affiliated Hospital of Yangtze University from January 2020 to December 2022. All patients were divided into the observation group (roxithromycin combined with azithromycin sequential therapy) and the control group (azithromycin sequential therapy), with 50 cases in each group. The clinical efficacy, improvement time of clinical symptoms/signs, inflammation indexes, oxidative stress indexes and immune function levels of the two groups were compared. Moreover, the improvement of lung function indexes and the adverse reactions were observed. Results: The overall response rate of the observation group was 96.00%, which was higher than the control group (84.00%) (p<0.05). The time of clinical symptoms/signs in the observation group were significantly lower than those in the control group(p<0.05). After treatment, significant improvements were seen in the levels of CRP, TNF-É, IL-6, GSH-Px, SOD, MDA, CD3+, CD4+, CD4+/CD8+, IgM, IgG , IgA, FEV1, FEV1%, FVC and FEV1/FVC of the two groups compared with those before treatment (p<0.05), and the improvement in the observation group was more obvious than that in the control group(p<0.05). The overall incidence of adverse reactions in the observation group was 6.00%, which was slightly lower than that in the control group (8.00%) (c²=0.154, P=0.695). Conclusion: Roxithromycin combined with azithromycin sequential therapy is a safe regimen for the treatment of mycoplasma pneumoniae pneumonia in children.
RESUMO
OBJECTIVE: This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing (tNGS) of bronchoalveolar lavage fluid (BALF) in pulmonary mycobacterial infections. METHODS: This retrospective study was conducted on patients who underwent bronchoscopy and tNGS, smear microscopy, and mycobacterial culture of BALF. Patients with positive Mycobacterium tuberculosis (MTB) culture or GeneXpert results were classified into the tuberculosis case group. Those diagnosed with nontuberculous mycobacteria (NTM)-pulmonary disease (NTM-PD) composed the case group of NTM-PD patients. The control group comprised patients without tuberculosis or NTM-PD. Sensitivity, specificity, and receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance. RESULTS: For tuberculosis patients with positive mycobacterial culture results, the areas under the ROC curves (AUCs) for tNGS, GeneXpert, and smear microscopy were 0.975 (95% CI: 0.935, 1.000), 0.925 (95% CI: 0.859, 0.991), and 0.675 (95% CI: 0.563, 0.787), respectively. For tuberculosis patients with positive GeneXpert results, the AUCs of tNGS, culture, and smear microscopy were 0.970 (95% CI: 0.931, 1.000), 0.850 (95% CI: 0.770, 0.930), and 0.680 (95% CI: 0.579, 0.781), respectively. For NTM-PD, the AUCs of tNGS, culture, and smear-positive but GeneXpert-negative results were 0.987 (95% CI: 0.967, 1.000), 0.750 (95% CI: 0.622, 0.878), and 0.615 (95% CI: 0.479, 0.752), respectively. The sensitivity and specificity of tNGS in NTM-PD patients were 100% and 97.5%, respectively. CONCLUSION: tNGS demonstrated superior diagnostic efficacy in mycobacterial infection, indicating its potential for clinical application.
Assuntos
Líquido da Lavagem Broncoalveolar , Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Mycobacterium não Tuberculosas , Tuberculose Pulmonar , Humanos , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pessoa de Meia-Idade , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos Retrospectivos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/genética , Idoso , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Curva ROC , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificação , Sensibilidade e Especificidade , AdultoRESUMO
Atrazine (ATZ), a widely used herbicide, disrupts mitochondrial function and lipid metabolism in the liver. Melatonin (MLT), a naturally synthesized hormone, combats mitochondrial dysfunction and alleviates lipid toxicity. However, the mechanisms behind ATZ-induced lipid metabolism toxicity and the protective effects of MLT remain unexplored. Mice were randomly assigned to four groups: control (Con), 5 mg/kg MLT, 170 mg/kg ATZ, and a cotreatment group receiving 170 mg/kg ATZ with 5 mg/kg MLT (ATZ+MLT). Additionally, we analyzed the effects of MLT and Rab8a on mRNA and proteins related to mitochondrial function and lipid metabolism disrupted by ATZ in AML12 cells. In conclusion, ATZ induced mitochondrial stress and disrupted fatty acid metabolism in mouse hepatocytes and AML12 cells. Exogenous MLT restores Rab8a levels, regulating fatty acid utilization in mitochondria and mitochondrial function. Notably, targeting Rab8a does not significantly affect mitochondrial function but prevents ATZ-induced lipid metabolism disorders in hepatocytes.
Assuntos
Atrazina , Hepatócitos , Herbicidas , Metabolismo dos Lipídeos , Melatonina , Mitocôndrias , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Atrazina/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Melatonina/farmacologia , Masculino , Herbicidas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/prevenção & controle , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Fígado/metabolismo , Fígado/efeitos dos fármacos , Humanos , Linhagem CelularRESUMO
This study investigated the effects of heat shock protein 22 (HSP22) against doxorubicin (DOX)-induced kidney injury. Mice were randomly assigned to four groups: CON, ad-HSP22, DOX, and ad-HSP22 + DOX. Adeno-associated virus carrying the HSP22 gene (ad-HSP22) was administered via tail vein injection for four weeks, followed by intraperitoneal simulation with DOX (20 mg/kg) for another five days. Upon euthanasia, ELISA, histological staining (H&E, IHC, DHE, and TUNEL), and western blot analyses were employed to assess relevant markers. Serum biomarkers of kidney injury, SCr, and BUN, were upregulated after DOX administration but normalized with HSP22 overexpression. Pathological changes induced by DOX were also reversed by HSP22 overexpression in H&E, IHC, DHE, and TUNEL stains. DOX-induced upregulation of NOX-2 and NOX-4 and downregulation of SOD-1 and SOD-2 were reversed by HSP22 overexpression. Similarly, DOX-induced increases in Bax and decrease in Bcl-2 were attenuated by HSP22 overexpression. The study further demonstrated that the Nrf2/HO-1 signaling pathway was activated by HSP22 overexpression. In vitro experiments corroborated the findings from in vivo experiments. In conclusion, HSP22 alleviates DOX-induced kidney injury by suppressing oxidative stress and apoptosis, primarily through the activation of the Nrf2/HO-1 signaling pathway. These results suggest HSP22 as a potential therapeutic target for DOX-induced kidney injury.
Assuntos
Apoptose , Doxorrubicina , Proteínas de Choque Térmico , Estresse Oxidativo , Animais , Doxorrubicina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismoRESUMO
Previous studies have detected microplastics (MPs) in human biological samples, such as lungs, alveolar lavage fluid, and thrombus. However, whether MPs induce health effects after inhalation are unclear. In this study, fluorescent polystyrene microplastics (PS-MPs) were found in the thymus, spleen, testes, liver, kidneys, and brain on day 1 or day 3 after one intratracheal instillation. Furthermore, mice showed inflammation in multiple organs, manifested as obvious infiltration of neutrophils and macrophages, increased Toll-like receptors (TLRs), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor-κB (NF-κB), as well as proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1ß) in the lungs, thymus, spleen, liver, and kidneys after four intratracheal instillations of PS-MPs at once every 2 weeks. Hepatic and renal function indexes were also increased. Subsequently, the inflammatory response in multiple murine organs was significantly alleviated by TLR2 and TLR4 inhibitors. Unexpectedly, we did not find any elevated secretion of monocyte chemotactic protein (MCP)-1 or TNF-α by RAW264.7 macrophages in vitro. Thus, PS-MPs induced inflammatory injuries in multiple murine organs via the TLRs/MyD88/NF-κB pathway in vivo, but not macrophages in vitro. These results may provide theoretical support for healthy protection against PS-MPs and their environmental risk assessment.
Assuntos
Inflamação , Microplásticos , Receptores Toll-Like , Animais , Camundongos , Receptores Toll-Like/metabolismo , Células RAW 264.7 , NF-kappa B/metabolismo , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , Macrófagos/efeitos dos fármacosRESUMO
Background: We aim to establish a gestational diabetes mellitus (GDM) mouse model with mice fed with a high-fat diet (HFD) in comparison with pregnant mice with normal blood glucose levels to investigate the role of intestinal microbiota in the development of HFD-induced GDM. Methods: We divided healthy 6-week-old female C57BL mice into an HFD-induced GDM group and a normal diet group. Their bacterial flora and metabolites in intestinal fecal exosomes were co-analyzed using 16 s multi-region sequencing and compared. Findings: Alpha (α) diversity was lower within the model group compared to the control group. Beta (ß) diversity was significantly different between the two groups. The relative abundances of Lactobacillus, Actinomyces, Rothia, and Bacteroidetes were significantly different between the two groups. Fermentation and nitrate consumption were significantly higher in the GDM group. Multiple bacteria were associated with glycerophosphocholine, S-methyl-5'-thioadenosine, quinolinate, galactinol, deoxyadenosine, DL-arginine, and 2-oxoadenic acid. Interpretation: Imbalances in the production of Lactobacillus, Bacteroidetes, Actinomyces, and Rothia and their related metabolites may lead to metabolic disturbances in GDM. These indicators may be used to assess changes affecting the intestinal microbiota during pregnancy and thus help modulate diet and alter blood glucose.
RESUMO
Antibiotic resistance is currently an unfolding global crisis threatening human health worldwide. While antibiotic resistance genes (ARGs) are known to be pervasive in environmental media, the occurrence of antibiotic resistance at interfaces between two or more adjacent media is largely unknown. Here, we designed a microcosm study to simulate plastic pollution in paddy soil and used a novel method, stimulated Raman scattering coupled with deuterium oxide (D2O) labelling, to compare the antibiotic resistance in a single medium with that at the interface of multiple environmental media (plastic, soil, water). Results revealed that the involvement of more types of environmental media at interfaces led to a higher proportion of active resistant bacteria. Genotypic analysis showed that ARGs (especially high-risk ARGs) and mobile genetic elements (MGEs) were all highly enriched at the interfaces. This enrichment was further enhanced by the co-stress of heavy metal (arsenic) and antibiotic (ciprofloxacin). Our study is the first to apply stimulated Raman scattering to elucidate antibiotic resistance at environmental interfaces and reveals novel pathway of antibiotic resistance dissemination in the environment and overlooked risks to human health.
RESUMO
Captivity is a key strategy for protecting endangered species, but research has primarily focused on artificial breeding and reintroduction to bolster wild populations, often overlooking the environmental and health risks associated with antibiotic resistance genes (ARGs). Here, we conducted a comprehensive analysis of the microbiome and ARG profiles in the gut of wild giant pandas across five representative populations, as well as one captive population, utilizing 16S rRNA gene sequencing and High-Throughput Quantitative PCR. Our findings revealed that both geographic location and captivity significantly influenced the gut microbial community and ARG composition in the gut of giant pandas. Additionally, we identified core microbiomes with essential ecological functions, particularly those related to food utilization, were identified in the giant panda gut across different regions. The gut ARGs in giant pandas exhibited a broad range of subtypes, with multidrug resistance genes being the most prevalent. Notably, the captive population harbored the highest abundance of high-risk ARGs, especially those conferring tetracycline resistance. High-risk multidrug ARGs (e.g., tolC, mepA, and mdtA) were found to be strongly correlated with the potential pathogens, such as Escherichia_Shigellina and Pseudomonas. Furthermore, bamboo-associated ARGs and mobile genetic elements (MGEs) contributed significantly to the ARG abundance in the giant panda gut, indicating that diet plays a crucial role in shaping gut resistome. Collectively, our study provides a detailed mapping of giant panda gut microbiomes and ARG distribution, offering valuable insights for conservation efforts and advancing our understanding of ARG dynamics in giant panda populations.
RESUMO
This study focuses on the ionic contribution by a chiral dopant added into a nematic host for preparing cholesteric liquid crystals (CLCs). Chiral structures were designated by individually incorporating two enantiomers, R5011 and S5011, into the nematic E44 to construct right- and left-handed CLCs, respectively. Characterized by the space-charge polarization, the dielectric spectra of the CLCs were investigated in the low-frequency regime, where f ≤ 1 kHz. The role of the individual chiral dopant, R5011 or S5011, at concentrations of 0-4.0 wt.% in altering the ionic properties of the CLC material was analyzed by deducing the electrical conductivity, ion density, and ion diffusivity. Regardless of the cell structure to be antiparallel or twisted by 90°, a significant ionic response was observed in the right-handed CLCs in comparison with the left-handed counterparts, suggesting that excess ions originating from our R5011 were introduced into the mesogenic mixtures. This work alarms the potential contribution of notorious impurity ions by a chiral dopant, which is often ignored in fabricating CLCs for electro-optical applications.
RESUMO
Reforms underway in Australia highlight key challenges.
RESUMO
Measurable residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an independent risk factor for relapse in patients with acute lymphoblastic leukemia (ALL). This study aimed to assess the efficacy, safety, and immune reconstitution of chimeric antigen receptor T-cell (CAR-T) therapy in patients with molecular relapse after allo-HSCT. Eleven patients with molecular relapse of B-cell-ALL who underwent CAR-T therapy after allo-HSCT were enrolled. The rate of MRD negativity after a month of CAR-T infusion was 81.8%. Patients who bridged to second-HSCT after CAR-T therapy (n = 3) showed a trend of higher 3-year leukemia-free survival and 3-year overall survival than those who did not (n = 8; 100% vs. 75.0%; 95% CI, 45.0-104.9%; p = 0.370). No treatment-related mortalities were observed. Among patients who did not bridge to second-HSCT and remained in complete remission until the last follow-up (n = 6), five of them had not recovered normal immunoglobulin concentrations with a median follow-up of 43 months. CAR-T therapy may be a safe and effective treatment strategy to improve survival after allo-HSCT; however, the problem of prolonged hypogammaglobulinemia in patients who do not bridge to second-HSCT is worth noting.
RESUMO
Nanoassemblies based on drug conjugates with high drug loading efficiency and stability have been regarded as promising candidates for the next generation of drug formulations. However, they are mostly amphiphilic. Here, a dual-hydrophobic drug conjugate-based nanoassembly has been created for enhanced synergistic antiproliferation against colorectal cancer cells. Camptothecin (CPT) and doxorubicin (DOX) were chosen as the hydrophobic drugs and covalently linked with a disulfide bond (-ss-). The synthesized CPT-ss-DOX can self-assemble into nanocubes (NCs) in an aqueous solution with the assistance of a small amount of polyethylene glycol (PEG), named PEGylated CPT-ss-DOX NCs. The PEGylated CPT-ss-DOX NCs were approximately 111.8 nm, possessing a crystal structure and a very low critical aggregation concentration (8.36 µg·mL-1). The self-assembly mechanism was studied using molecular docking and molecular dynamic simulation methods. The NCs demonstrated excellent storage stability and improved water solubility of CPT and DOX. These NCs could be taken up by cancer cells and gradually release the drugs. In addition, they had higher toxicity to cancer cells than a mixture of CPT and DOX, while they displayed reduced toxicity to normal cells. Due to assembly and PEG modification, the NCs improved drug retention time and enhanced accumulation at the tumor site. More importantly, they significantly inhibited colorectal tumor growth (58.37%) in vivo, superior to the CPT+DOX mix (42.63%). Moreover, the NCs reduced the cardiac toxicity of free drugs. Therefore, the prepared PEGylated CPT-ss-DOX NCs hold great potential for clinical transformation and provide a novel method for the self-delivery of hydrophobic molecules in cancer therapy.
Assuntos
Camptotecina , Neoplasias Colorretais , Doxorrubicina , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Doxorrubicina/química , Doxorrubicina/farmacologia , Camptotecina/química , Camptotecina/farmacologia , Polietilenoglicóis/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Animais , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Linhagem Celular TumoralRESUMO
Brown-rot fungi are an important group of wood-decaying fungi, but there has been limited research on the species diversity of brown-rot fungi in Xinjiang, China. During an investigation of brown-rot fungi in Xinjiang, from July 2018 to July 2023, five new species belonging to the family Postiaceae were discovered based on morphological and molecular evidence. Amaropostia altaiensis is characterized by a conchate pileus, circular pores (5-8 per mm), and growing on Populus. Amaropostia tianshanensis is characterized by a flabelliform-to-conchate pileus, angular pores (5-6 per mm), and growing on Picfea. Cyanosporus latisporus is characterized by a hirsute and dark greyish blue pileal surface with fresh, larger pores (3-6 per mm) and broad basidiospores (4.3-5.9 × 1.4-2 µm). Cyanosporus tianshanensis is characterized by a smooth and white-to-cream pileal surface with fresh, smaller pores (6-9 per mm). Osteina altaiensis is characterized by a light mouse-grey-to-honey-yellow pileal surface, smaller pores (4-6 per mm), and slightly wide basidiospores (5-6 × 1.7-2.2 µm). Each of these five new species form independent lineages in phylogenetic analyses based on the seven gene loci (ITS + nLSU + nSSU + mtSSU + TEF1 + RPB1 + RPB2). This research enriches the diversity of brown-rot fungi species, while also demonstrating the substantial discovery potential and research value of brown-rot fungi in Xinjiang.
RESUMO
Although the Japanese encephalitis virus (JEV) infects various cell types, its receptor molecules are still not clearly understood. In our laboratory's prior research, Rab4b was identified as a potential host factor that facilitates JEV infection in PK15 cells, utilizing a genome-wide CRISPR/Cas9 knockout library (PK-15-GeCKO). To further explore the effect of Rab4b on JEV replication, we used the Rab4b knockout PK15 cell line using the CRISPR/Cas9 technology and overexpressing the Rab4b PK15 cell line, with IFA, RT-qPCR, and Western blot to study the effect of Rab4b on viral replication in the whole life cycle of the JEV. The results show that the knockout of Rab4b inhibited the replication of the JEV in PK15 cells, and the overexpression of Rab4b promoted the replication of the JEV in PK15 cell lines. Furthermore, we demonstrated for the first time that host factor Rab4b facilitates the adsorption, internalization, assembly, and release of the JEV, thereby promoting JEV replication. This study enriches the regulatory network between the JEV and host factors and lays the experimental foundation for further understanding of the function of the Rab4b protein.
RESUMO
RNA-binding proteins (RBPs) modulate all aspects of RNA metabolism, but a comprehensive picture of RBP expression across tissues is lacking. Here, we describe our development of the method we call HARD-AP that robustly retrieves RBPs and tightly associated RNA regulatory complexes from cultured cells and fresh tissues. We successfully use HARD-AP to establish a comprehensive atlas of RBPs across mouse primary organs. We then systematically map RNA-binding sites of these RBPs using machine learning-based modeling. Notably, the modeling reveals that the LIM domain as an RNA-binding domain in many RBPs. We validate the LIM-domain-only protein Csrp1 as a tissue-dependent RNA binding protein. Taken together, HARD-AP is a powerful approach that can be used to identify RBPomes from any type of sample, allowing comprehensive and physiologically relevant networks of RNA-protein interactions.
Assuntos
Aprendizado de Máquina , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Sítios de Ligação , RNA/metabolismo , RNA/genética , Ligação Proteica , HumanosRESUMO
The biogeochemical cycling of arsenic (As) is often intertwined with iron (Fe) and sulfur (S) cycles, wherein Fe(III)- and sulfate-reducing bacteria (SRB) play a crucial role. Here, we isolated strain DS-1, a strictly anaerobic Fe(III)- and sulfate-reducing bacterium, from As-contaminated paddy soil. Using 16S rRNA gene sequence analysis, strain DS-1 was identified as a member of the genus Desulfovibrio. Strain DS-1 utilized energy derived from ferrihydrite reduction to support its cellular growth. Under anoxic sulfate-reducing conditions, the presence of strain DS-1 significantly increased As mobilization compared to sulfate-free conditions. Mechanistically, SRB-produced sulfide reacts with Fe(III) to form FeS, which disrupts Fe(III) minerals, thereby enhancing As release. These findings highlight the critical role of redox disequilibrium in As mobilization and suggest that SRB-produced sulfide may permeate to the rice rhizosphere, increasing As mobilization through Fe(III) reduction.
RESUMO
Objective To analyze the sensitivity of ARHGAP8 in predicting the efficacy of neoadjuvant chemotherapy in the patients with locally advanced mid-low colorectal cancer and provide accurate evidence for the treatment of advanced colorectal cancer. Methods The differentially expressed gene ARHGAP8 was screened out by bioinformatics analysis.Cancer tissue and rectal tissue of 68 patients with primary rectal cancer were selected.The rectal cancer tissue samples and the rectal tissue samples were collected for clinical validation of ARHGAP8 expression by quantitative real-time PCR,Western blotting,and immunohistochemistry.The clinical and pathological features such as gender,age,tumor stage,differentiation degree,and pathological type of the patients were collected for functional validation.Forty-four patients with locally advanced mid-low rectal cancer who received neoadjuvant chemotherapy were selected for immunohistochemical examination of ARHGAP8 expression.The expression level of ARHGAP8 was compared between before and after chemotherapy and among different efficacy groups. Results The bioinformatics analysis revealed differences in the expression level of ARHGAP8 between the cancer tissue and rectal tissue (P<0.001).The expression level of ARHGAP8 was correlated with tumor stage (P=0.024),lymph node metastasis (P=0.007),and age (P=0.005).Quantitative real-time PCR results showed that the mRNA level of ARHGAP8 in the cancer tissue was higher than that in the rectal tissue (P<0.001).Western blotting and immunohistochemistry results demonstrated that the protein level of ARHGAP8 in the cancer tissue was higher than that in the rectal tissue (P=0.011).The expression of ARHGAP8 was correlated with tumor size (P=0.010) and pathological stage (P=0.005),while it showed no significant association with tumor differentiation degree,lymph node metastasis,liver metastasis,Ki-67,or microsatellite instability expression level.The 44 patients receiving neoadjuvant chemotherapy included 13,8,8,and 15 patients of tumor regression grades 0,1,2,and 3,respectively.Among them,65.91% (29/44) patients showed responses to the treatment.After neoadjuvant chemotherapy,the expression of ARHGAP8 in the cancer tissue was down-regulated in the patients who responded to the chemotherapy (P<0.001).The response rate in the patients with low protein level of ARHGAP8 was 92.86%,which was higher than that (53.33%) in the patients with high protein level of ARHGAP8 (P=0.033). Conclusion ARHGAP8 is highly expressed in the rectal cancer tissue.The patients with locally advanced mid-low rectal cancer and low ARHGAP8 expression are more sensitive to neoadjuvant chemotherapy with the XELOX protocol.ARHGAP8 can serve as a potential biomarker for the occurrence and development of rectal cancer and an important index for evaluating the efficacy of neoadjuvant chemotherapy with the XELOX protocol in the patients with locally advanced mid-low rectal cancer.
Assuntos
Proteínas Ativadoras de GTPase , Terapia Neoadjuvante , Neoplasias Retais , Humanos , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/patologia , Neoplasias Retais/metabolismo , Neoplasias Retais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Idoso , Adulto , Quimioterapia Adjuvante , Estadiamento de NeoplasiasRESUMO
Acute lung injury (ALI) is a serious adverse event in the management of acute type A aortic dissection (ATAAD). Using a large-scale cohort, we applied artificial intelligence-driven approach to stratify patients with different outcomes and treatment responses. A total of 2,499 patients from China 5A study database (2016-2022) from 10 cardiovascular centers were divided into 70% for derivation cohort and 30% for validation cohort, in which extreme gradient boosting algorithm was used to develop ALI risk model. Logistic regression was used to assess the risk under anti-inflammatory strategies in different risk probability. Eight top features of importance (leukocyte, platelet, hemoglobin, base excess, age, creatinine, glucose, and left ventricular end-diastolic dimension) were used to develop and validate an ALI risk model, with adequate discrimination ability regarding area under the receiver operating characteristic curve of 0.844 and 0.799 in the derivation and validation cohort, respectively. By the individualized treatment effect prediction, ulinastatin use was significantly associated with significantly lower risk of developing ALI (odds ratio [OR] 0.623 [95% CI 0.456, 0.851]; P = 0.003) in patients with a predicted ALI risk of 32.5-73.0%, rather than in pooled patients with a risk of <32.5 and >73.0% (OR 0.929 [0.682, 1.267], P = 0.642) (Pinteraction = 0.075). An artificial intelligence-driven risk stratification of ALI following ATAAD surgery were developed and validated, and subgroup analysis showed the heterogeneity of anti-inflammatory pharmacotherapy, which suggested individualized anti-inflammatory strategies in different risk probability of ALI.
RESUMO
Pasteurella multocida toxin (PMT) is one of the most important virulence factors of Pasteurella multocida type D. Pasteurella multocida infection has caused enormous economic losses in the pig farming industry. Although it is well known that this bacterial infection causes progressive atrophic rhinitis, its effects on other organ tissues in pigs are unclear. In this study, PMT was expressed and purified, and the cytotoxic effects of PMT on four types of swine cells, LLC-PK1, PAM, IPEC, and ST, were investigated. LLC-PK1 exhibited the highest sensitivity to the cytotoxic effects of PMT. Our studies revealed that a PMT concentration of 0.1 µg/kg can lead to weight loss, whereas a PMT concentration of 0.5 µg/kg can lead to death in mice. PMT causes damage to the intestines, kidneys, lungs, livers, and spleens of mice. Furthermore, PMT caused acute death in pigs at treatment concentrations greater than 5 µg/kg; at PMT concentration of 2.5 µg/kg, weight loss occurred until death. PMT mainly caused damage to the hearts, lungs, livers, spleens and kidneys of pigs. The organ coefficient showed that damage to the heart and kidneys was the most severe and caused the renal pelvis and renal pyramid to dissolve and become cavitated. Pathology revealed hemorrhage in the lungs, liver, and spleen, and the kidneys were swollen and vacuolated, which was consistent with the damaged target organs in the mice. In conclusion, these findings demonstrate that PMT is extremely toxic in vitro and in vivo, causing damage to various organs of the body, especially the kidneys and lungs. This study provides a theoretical basis for the in-depth exploration of the cytotoxic effects of PMT on target organs.