Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Clin Immunol ; 264: 110260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788885

RESUMO

Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.


Assuntos
Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Aparelho Lacrimal , Camundongos Endogâmicos NOD , Síndrome de Sjogren , Animais , Síndrome de Sjogren/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Aparelho Lacrimal/imunologia , Aparelho Lacrimal/patologia , Interleucinas/imunologia , Interleucinas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Transdução de Sinais/imunologia , Receptores de Interleucina/imunologia , Interleucina-27/metabolismo , Interleucina-27/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Apirase/imunologia , Apirase/metabolismo
2.
Sci Adv ; 10(20): eadn2136, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758799

RESUMO

Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic ß cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional ß cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.


Assuntos
Diabetes Mellitus Tipo 1 , Progressão da Doença , Monócitos , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Monócitos/metabolismo , Monócitos/imunologia , Masculino , Feminino , Adolescente , Criança , Adulto , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Adulto Jovem , Estudos de Casos e Controles
3.
Immunity ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754432

RESUMO

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.

4.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461573

RESUMO

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Assuntos
Melanocortinas , Compostos Orgânicos de Estanho , Perciformes , Animais , Pró-Opiomelanocortina , Ecossistema , Melaninas/genética , Pteridinas , Peixes/genética , Perciformes/genética , Pterinas , Redes e Vias Metabólicas
5.
J Drug Target ; 32(3): 300-310, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38269855

RESUMO

Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Receptores de Lisoesfingolipídeo/metabolismo , Sistema Cardiovascular/metabolismo
6.
Adv Mater ; 36(15): e2310306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194699

RESUMO

The enzymatic activities of Furin, Transmembrane serine proteinase 2 (TMPRSS2), Cathepsin L (CTSL), and Angiotensin-converting enzyme 2 (ACE2) receptor binding are necessary for the entry of coronaviruses into host cells. Precise inhibition of these key proteases in ACE2+ lung cells during a viral infection cycle shall prevent viral Spike (S) protein activation and its fusion with a host cell membrane, consequently averting virus entry to the cells. In this study, dual-drug-combined (TMPRSS2 inhibitor Camostat and CTSL inhibitor E-64d) nanocarriers (NCs) are constructed conjugated with an anti-human ACE2 (hACE2) antibody and employ Red Blood Cell (RBC)-hitchhiking, termed "Nanoengineered RBCs," for targeting lung cells. The significant therapeutic efficacy of the dual-drug-loaded nanoengineered RBCs in pseudovirus-infected K18-hACE2 transgenic mice is reported. Notably, the modular nanoengineered RBCs (anti-receptor antibody+NCs+RBCs) precisely target key proteases of host cells in the lungs to block the entry of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), regardless of virus variations. These findings are anticipated to benefit the development of a series of novel and safe host-cell-protecting antiviral therapies.


Assuntos
COVID-19 , Catepsina L , SARS-CoV-2 , Inibidores de Serina Proteinase , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Eritrócitos , Pulmão/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico
7.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38051583

RESUMO

There is great interest in identifying signaling pathways that promote cardiac repair after myocardial infarction (MI). Prior studies suggest a beneficial role for IL-13 signaling in neonatal heart regeneration; however, the cell types mediating cardiac regeneration and the extent of IL-13 signaling in the adult heart after injury are unknown. We identified an abundant source of IL-13 and the related cytokine, IL-4, in neonatal cardiac type 2 innate lymphoid cells, but this phenomenon declined precipitously in adult hearts. Moreover, IL-13 receptor deletion in macrophages impaired cardiac function and resulted in larger scars early after neonatal MI. By using a combination of recombinant IL-13 administration and cell-specific IL-13 receptor genetic deletion models, we found that IL-13 signaling specifically to macrophages mediated cardiac functional recovery after MI in adult mice. Single transcriptomics revealed a subpopulation of cardiac macrophages in response to IL-13 administration. These IL-13-induced macrophages were highly efferocytotic and were identified by high IL-1R2 expression. Collectively, we elucidated a strongly proreparative role for IL-13 signaling directly to macrophages following cardiac injury. While this pathway is active in proregenerative neonatal stages, reactivation of macrophage IL-13 signaling is required to promote cardiac functional recovery in adults.


Assuntos
Interleucina-13 , Infarto do Miocárdio , Camundongos , Animais , Interleucina-13/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina-13/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015847

RESUMO

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos NOD , Vírus do Tumor Mamário do Camundongo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD4-Positivos , Camundongos Transgênicos
9.
Antioxidants (Basel) ; 12(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760076

RESUMO

This study aimed to investigate the effects of dietary tannic acid (TAN) on the gas production, growth performance, antioxidant capacity, rumen microflora, and fermentation function of beef cattle through in vitro and in vivo experiments. TAN was evaluated at 0.15% (dry matter basis, DM) in the in vitro experiment and 0.20% (DM basis) in the animal feeding experiment. The in vitro results revealed that compared with control (CON, basal diet without TAN), the addition of TAN significantly increased the cumulative gas production and asymptotic gas production per 0.20 g dry matter substrate (p < 0.01), with a tendency to reduce methane concentration after 96 h of fermentation (p = 0.10). Furthermore, TAN supplementation significantly suppressed the relative abundance of Methanosphaera and Methanobacteriaceae in the fermentation fluid (LDA > 2.50, p < 0.05). The in vivo experiment showed that compared with CON, the dietary TAN significantly improved average daily gain (+0.15 kg/d), dressing percent (+1.30%), net meat percentage (+1.60%), and serum glucose concentration (+23.35%) of beef cattle (p < 0.05), while it also significantly reduced hepatic malondialdehyde contents by 25.69% (p = 0.02). Moreover, the TAN group showed significantly higher alpha diversity (p < 0.05) and increased relative abundance of Ruminococcus and Saccharomonas (LDA > 2.50, p < 0.05), while the relative abundance of Prevotellaceae in rumen microbial community was significantly decreased (p < 0.05) as compared to that of the CON group. In conclusion, the dietary supplementation of TAN could improve the growth and slaughter performance and health status of beef cattle, and these favorable effects might be attributed to its ability to alleviate liver lipid peroxidation, enhance glucose metabolism, and promote a balanced rumen microbiota for optimal fermentation.

10.
Metabolites ; 13(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37755275

RESUMO

This study explored the effects of drinking heated water in the cold seasons on the serum metabolism, rumen microbial fermentation, and metabolome of beef cattle. Twelve fattening cattle (642 ± 14.6 kg) aged 21 to 22 months were randomly and equally divided into two groups based on body weight: one receiving room-temperature water (RTW; average 4.39 ± 2.55 °C) and the other heated water (HW; average 26.3 ± 1.70 °C). The HW group displayed a significant decrease in serum glucose (p < 0.01) and non-esterified fatty acid (p < 0.01), but increases in insulin (p = 0.04) and high-density lipoprotein (p = 0.03). The rumen fermentation parameters of the HW group showed substantial elevations in acetate (p = 0.04), propionate (p < 0.01), isobutyrate (p = 0.02), and total volatile fatty acids (p < 0.01). Distinct bacterial composition differences were found between RTW and HW at the operational taxonomic unit (OTU) level (R = 0.20, p = 0.01). Compared to RTW, the HW mainly had a higher relative abundance of Firmicutes (p = 0.07) at the phylum level and had a lower abundance of Prevotella (p < 0.01), norank_f_p-215-o5 (p = 0.03), and a higher abundance of NK4A214_group (p = 0.01) and Lachnospiraceae_NK3A20_group (p = 0.05) at the genus level. In addition, NK4A214_group and Lachnospiraceae_NK3A20_group were significantly positively correlated with the rumen propionate and isovalerate (r > 0.63, p < 0.05). Prevotella was negatively correlated with rumen propionate and total volatile fatty acids (r = -0.61, p < 0.05). In terms of the main differential metabolites, compared to the RTW group, the expression of Cynaroside A, N-acetyl-L-glutamic acid, N-acetyl-L-glutamate-5-semialdehyde, and Pantothenic acid was significantly upregulated in HW. The differentially regulated metabolic pathways were primarily enriched in nitrogen metabolism, arginine biosynthesis, and linoleic acid metabolism. Prevotella was significantly positively correlated with suberic acid and [6]-Gingerdiol 3,5-diacetate (r > 0.59, p < 0.05) and was negatively correlated with Pantothenic acid and isoleucyl-aspartate (r < -0.65, p < 0.05). NK4A214_group was positively correlated with L-Methionine and glycylproline (r > 0.57, p < 0.05). Overall, our research demonstrates the important relationship between drinking water temperature and metabolic and physiological responses in beef cattle. Heating drinking water during cold seasons plays a pivotal role in modulating internal energy processes. These findings underscore the potential benefits of using heated water as a strategic approach to optimize energy utilization in beef cattle during the cold seasons.

11.
Diabetes ; 72(11): 1629-1640, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625150

RESUMO

Costimulation serves as a critical checkpoint for T-cell activation, and several genetic variants affecting costimulatory pathways confer risk for autoimmune diseases. A single nucleotide polymorphism (rs763361) in the CD226 gene encoding a costimulatory receptor increases susceptibility to multiple autoimmune diseases, including type 1 diabetes. We previously found that Cd226 knockout protected NOD mice from disease, but the impact of CD226 on individual immune subsets remained unclear. Our prior reports implicate regulatory T cells (Tregs), as human CD226+ Tregs exhibit reduced suppressive function. Hence, we hypothesized that genomic Cd226 gene deletion would increase Treg stability and that Treg-specific Cd226 deletion would inhibit diabetes in NOD mice. Indeed, crossing NOD.Cd226-/- and a NOD Treg-lineage tracing strain resulted in decreased pancreatic Foxp3-deficient "ex-Tregs." We generated a novel Treg-conditional knockout (TregΔCd226) strain that displayed decreased insulitis and diabetes incidence. CD226-deficient pancreatic Tregs had increased expression of the coinhibitory counter-receptor T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT). Moreover, NOD splenocytes treated with TIGIT-Fc fusion protein exhibited reduced T-cell proliferation and interferon-γ production following anti-CD3/CD28 stimulation. This study demonstrates that a CD226/TIGIT imbalance contributes to Treg instability in NOD mice and highlights the potential for therapeutic targeting this costimulatory pathway to halt autoimmunity.

12.
Adv Sci (Weinh) ; 10(28): e2206692, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37587835

RESUMO

Regulatory T (Treg) cells are inevitable to prevent deleterious immune responses to self and commensal microorganisms. Treg function requires continuous expression of the transcription factor (TF) FOXP3 and is divided into two major subsets: resting (rTregs) and activated (aTregs). Continuous T cell receptor (TCR) signaling plays a vital role in the differentiation of aTregs from their resting state, and in their immune homeostasis. The process by which Tregs differentiate, adapt tissue specificity, and maintain stable phenotypic expression at the transcriptional level is still inconclusivei. In this work, the role of BATF is investigated, which is induced in response to TCR stimulation in naïve T cells and during aTreg differentiation. Mice lacking BATF in Tregs developed multiorgan autoimmune pathology. As a transcriptional regulator, BATF is required for Treg differentiation, homeostasis, and stabilization of FOXP3 expression in different lymphoid and non-lymphoid tissues. Epigenetically, BATF showed direct regulation of Treg-specific genes involved in differentiation, maturation, and tissue accumulation. Most importantly, FOXP3 expression and Treg stability require continuous BATF expression in Tregs, as it regulates demethylation and accessibility of the CNS2 region of the Foxp3 locus. Considering its role in Treg stability, BATF should be considered an important therapeutic target in autoimmune disease.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Camundongos , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Antioxidants (Basel) ; 12(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37627487

RESUMO

The research aimed to investigate the suitable drinking water temperature in winter and its effect on the growth performance, antioxidant capacity, and rumen fermentation function of beef cattle. A total of 40 beef cattle (640 ± 19.2 kg) were randomly divided into five treatments with eight cattle in each treatment raised in one pen according to initial body weight. Each treatment differed only in the temperature of drinking water, including the room-temperature water and four different heat water groups named RTW, HW_1, HW_2, HW_3, and HW_4. The measured water temperatures were 4.39 ± 2.546 °C, 10.6 ± 1.29 °C, 18.6 ± 1.52 °C, 26.3 ± 1.70 °C, and 32.5 ± 2.62 °C, respectively. The average daily gain (ADG) showed a significant linear increase during d 0 to 60 and a quadratic increase during d 31 to 60 with rising water temperature (p < 0.05), and the highest ADG of 1.1911 kg/d was calculated at a water temperature of 23.98 °C (R2 = 0.898). The average rectal temperature on d 30 (p = 0.01) and neutral detergent fiber digestibility (p < 0.01) increased linearly with increasing water temperature. Additionally, HW_2 reduced serum triiodothyronine, thyroxine, and malondialdehyde (p < 0.05), and increased serum total antioxidant capacity (p < 0.05) compared with RTW. Compared with HW_2, RTW had unfavorable effects on ruminal propionate, total volatile fatty acids, and cellulase concentrations (p < 0.05), and lower relative mRNA expression levels of claudin-4 (p < 0.01), occludin (p = 0.02), and zonula occludens-1 (p = 0.01) in the ruminal epithelium. Furthermore, RTW had a higher abundance of Prevotella (p = 0.04), Succinivibrionaceae_UCG-002 (p = 0.03), and Lachnospiraceae_UCG-004 (p = 0.03), and a lower abundance of Bifidobacteriaceae (p < 0.01) and Marinilabiliaceae (p = 0.05) in rumen compared to HW_2. Taken together, heated drinking water in cold climates could positively impact the growth performance, nutrient digestibility, antioxidant capacity, and rumen fermentation function of beef cattle. The optimal water temperature for maximizing ADG was calculated to be 23.98 °C under our conditions. Ruminal propionate and its producing bacteria including Prevotella, Succinivibrionaceae, and Lachnospiraceae might be important regulators of rumen fermentation of beef cattle drinking RTW under cold conditions.

14.
Genes Genomics ; 45(9): 1127-1141, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438657

RESUMO

BACKGROUND: MIKC type MADS-box transcription factors are one of the largest gene families and play a pivotal role in flowering time and flower development. Chimonanthus salicifolius belongs to the family Calycanthaceae and has a unique flowering time and flowering morphology compared to other Chimonanthus species, but the research on MIKC type MADS-box gene family of C. salicifolius has not been reported. OBJECTIVE: Identification, comprehensive bioinformatic analysis, the expression pattern of MIKC-type MADS-box gene family from different tissues of C. salicifolius. METHODS: Genome-wide investigation and expression pattern under different tissues of the MIKC-type MADS-box gene family in C. salicifolius, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element were performed. RESULTS: A total of 29 MIKC-type MADS-box genes were identified from the whole genome sequencing. Interspecies synteny analysis revealed more significant collinearity between C. salicifolius and the magnoliids species compared to eudicots and monocots. MIKC-type MADS-box genes from the same subfamily share similar distribution patterns, gene structure, and expression patterns. Compared with Arabidopsis thaliana, Nymphaea colorata, and Chimonanthus praecox, the FLC genes were absent in C. salicifolius, while the AGL6 subfamily was expanded in C. salicifolius. The selectively expanded promoter (AGL6) and lack of repressor (FLC) genes may explain the earlier flowering in C. salicifolius. The loss of the AP3 homologous gene in C. salicifolius is probably the primary cause of the morphological distinction between C. salicifolius and C. praecox. The csAGL6a gene is specifically expressed in the flowering process and indicates the potential function of promoting flowering. CONCLUSION: This study offers a genome-wide identification and expression profiling of the MIKC-types MADS-box genes in the C. salicifolius, and establishes the foundation for screening flowering development genes and understanding the potential function of the MIKC-types MADS-box genes in the C. salicifolius.


Assuntos
Genoma de Planta , Proteínas de Domínio MADS , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Expressão Gênica , Fatores de Transcrição/genética
15.
Appl Environ Microbiol ; 89(4): e0174322, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939340

RESUMO

Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.


Assuntos
Doenças Transmissíveis , Exossomos , Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Staphylococcus aureus/fisiologia , Exossomos/metabolismo , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Células Epiteliais/fisiologia , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/veterinária , Glândulas Mamárias Animais/microbiologia
16.
Insect Sci ; 30(6): 1607-1621, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36915030

RESUMO

Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in ß1-ß6 or α1 in the MBD showed that ß2-ß3-turns in the ß-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, ß4-ß6 and an α-helix, play a role in stabilizing the ß-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without ß4-ß6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact ß-sheet structure in its MBD, thus ensuring silkworm embryonic development.


Assuntos
Bombyx , Proteínas de Ligação a DNA , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bombyx/genética , Bombyx/metabolismo , Ilhas de CpG , Conformação Proteica em Folha beta , Metilação de DNA , Genômica
17.
J Immunol ; 210(7): 935-946, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762954

RESUMO

IL-21 is essential for type 1 diabetes (T1D) development in the NOD mouse model. IL-21-expressing CD4 T cells are present in pancreatic islets where they contribute to T1D progression. However, little is known about their phenotype and differentiation states. To fill this gap, we generated, to our knowledge, a novel IL-21 reporter NOD strain to further characterize IL-21+ CD4 T cells in T1D. IL-21+ CD4 T cells accumulate in pancreatic islets and recognize ß cell Ags. Single-cell RNA sequencing revealed that CD4 T effector cells in islets actively express IL-21 and they are highly diabetogenic despite expressing multiple inhibitory molecules, including PD-1 and LAG3. Islet IL-21+ CD4 T cells segregate into four phenotypically and transcriptionally distinct differentiation states, that is, less differentiated early effectors, T follicular helper (Tfh)-like cells, and two Th1 subsets. Trajectory analysis predicts that early effectors differentiate into both Tfh-like and terminal Th1 cells. We further demonstrated that intrinsic IL-27 signaling controls the differentiation of islet IL-21+ CD4 T cells, contributing to their helper function. Collectively, our study reveals the heterogeneity of islet-infiltrating IL-21+ CD4 T cells and indicates that both Tfh-like and Th1 subsets produce IL-21 throughout their differentiation process, highlighting the important sources of IL-21 in T1D pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Linfócitos T CD4-Positivos/patologia , Camundongos Endogâmicos NOD , Ilhotas Pancreáticas/patologia
18.
Zhongguo Gu Shang ; 36(1): 86-91, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36653013

RESUMO

OBJECTIVE: To study the application of different puncture techniques to inject bone cement in osteoporotic vertebral compression fractures (OVCFs). METHODS: The clinical data of 282 patients with OVCFs treated from January 2017 to December 2019 were collected for a retrospective study. According to the surgical plan the patients were divided into group A and B, with 141 cases in each group. In group A, extreme lateral puncture was used to inject bone cement through unilateral puncture and bilateral puncture. In group B, bone cement was injected through unilateral pedicle puncture through pedicle approach. The operation status(operation time, radiation exposure time, bone cement injection volume, hospital stay) and complications were observed between two groups. Before operation and 6, 12 months after operation, the pain mediators such as serotonin 5-hydroxytryptamine (5-HT), prostaglandin E2(PGE2), substance P(SP) were compared, bone mineral density, anatomical parameters of the injured vertebrae (height of the anterior edge of the vertebral body, height of the posterior edge of the vertebral body, Cobb angle), visual analogue scale (VAS) and Oswestry disability index (ODI) were evaluated between two groups. RESULTS: There were no significant difference in operation time, radiation exposure time, hospital stay between two groups (P>0.05). The amount of bone cement injected in group A was greater than that in group B (P<0.05). The serum 5-HT, SP and PGE2 levels of group A were lower than those of group B at 12 months after operation (P<0.05). The height of anterior edge and height of the posterior edge of vertebral body in group A were greater than those of group B at 12 months after operation, Cobb angle of group A was smaller than that of group B, VAS and ODI were lower than those of group B(P<0.05). There was no significant difference in bone mineral density between two groups at 6 and 12 months postoperatively(P<0.05). There was no significant difference between two groups in postoperative complications (P>0.05). CONCLUSION: Compared with unilateral puncture of the pedicle approach, unilateral puncture and bilateral cement injection technique is more conducive to the recovery of the injured vertebral anatomy and function, and do not prolong operation time, radiation exposure time, hospital stay, nor do increase the risk of nerve damage and bone cement leakage, and postoperative bone metabolism and bone mineral density are improved well, which is a safe and reliable surgical method for the treatment of OVCFs.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Fraturas da Coluna Vertebral/cirurgia , Fraturas por Compressão/cirurgia , Cimentos Ósseos , Vertebroplastia/métodos , Estudos Retrospectivos , Dinoprostona , Serotonina , Resultado do Tratamento , Fraturas por Osteoporose/cirurgia , Punções
19.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36512407

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulting in pancreatic ß cell destruction. Coxsackievirus B3 (CVB3) infection and melanoma differentiation-associated protein 5-dependent (MDA5-dependent) antiviral responses are linked with T1D development. Mutations within IFIH1, coding for MDA5, are correlated with T1D susceptibility, but how these mutations contribute to T1D remains unclear. Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression (KO) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (ΔHel1), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses. Spontaneous T1D developed in female NOD and KO mice similarly, but was significantly delayed in ΔHel1 mice, which may be partly due to a concomitant increase in myeloid-derived suppressor cells. Interestingly, KO male mice had increased spontaneous T1D compared with NOD mice. Whereas NOD and KO mice developed CVB3-accelerated T1D, ΔHel1 mice were protected partly due to decreased type I IFNs, pancreatic infiltrating TNF+ macrophages, IFN-γ+CD4+ T cells, and perforin+CD8+ T cells. Furthermore, ΔHel1 MDA5 protein had reduced ATP hydrolysis compared with wild-type MDA5. Our results suggest that dampened MDA5 function delays T1D, yet loss of MDA5 promotes T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Masculino , Feminino , Camundongos , Animais , Helicase IFIH1 Induzida por Interferon , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Macrófagos/metabolismo
20.
Insect Sci ; 30(4): 1063-1080, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36419227

RESUMO

DNA methylation and transcription factors play roles in gene expression and animal development. In insects, DNA methylation modifies gene bodies, but how DNA methylation and transcription factors regulate gene expression is unclear. In this study, we investigated the mechanism that regulates the expression of Bombyx mori Zinc finger protein 615 (ZnF 615), which is a downstream gene of DNA methyltransferase 1 (Dnmt1), and its effects on the regulation of embryonic development. By progressively truncating the ZnF 615 promoter, it was found that the -223 and -190 nt region, which contains homeobox (Hox) protein cis-regulatory elements (CREs), had the greatest impact on the transcription of ZnF 615. RNA interference (RNAi)-mediated knockdown and overexpression of Hox family genes showed that Hox A1-like can enhance the messenger RNA level of ZnF 615. Further studies showed that Hox A1-like regulates ZnF 615 expression by directly binding to the -223 and -190 nt region of its promoter. Simultaneous RNAi-mediated knockdown or overexpression of Hox A1-like and Dnmt1 significantly inhibited or enhanced the regulatory effect of either gene alone on ZnF 615 expression, suggesting that both DNA methylation of gene bodies and binding of transcription factors to promoters are essential for gene expression. RNAi-mediated knockdown of Hox A1-like and Dnmt1 showed that the embryonic development was retarded and the hatching rate was decreased. Taken together, these data suggest that Hox A1-like and DNA methylation enhance the expression of ZnF 615, thereby affecting the development of B. mori embryos.


Assuntos
Bombyx , Animais , Metilação de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Desenvolvimento Embrionário/genética , Expressão Gênica , Dedos de Zinco , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA