Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Mol Biol ; 91(4-5): 413-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27039184

RESUMO

Phytochromes recognize light signals and control diverse developmental processes. In rice, all three phytochrome genes-OsphyA, OsphyB, and OsphyC-are involved in regulating flowering time. We investigated the role of OsPhyA by comparing the osphyA osphyB double mutant to an osphyB single mutant. Plants of the double mutant flowered later than the single under short days (SD) but bolted earlier under long days (LD). Under SD, this delayed-flowering phenotype was primarily due to the decreased expression of Oryza sativa GIGANTEA (OsGI), which controls three flowering activators: Heading date 1 (Hd1), OsMADS51, and Oryza sativa Indeterminate 1 (OsId1). Under LD, although the expression of several repressors, e.g., Hd1, Oryza sativa CONSTANS-like 4 (OsCOL4), and AP2 genes, was affected in the double mutant, that of Grain number, plant height and heading date 7 (Ghd7) was the most significantly reduced. These results indicated that OsPhyA influences flowering time mainly by affecting the expression of OsGI under SD and Ghd7 under LD when phytochrome B is absent. We also demonstrated that far-red light delays flowering time via both OsPhyA and OsPhyB.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Fotoperíodo , Fitocromo B/metabolismo , Proteínas de Plantas/metabolismo , Relógios Circadianos/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética
2.
J Exp Bot ; 67(8): 2425-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26912801

RESUMO

The formation of body axes is the basis of morphogenesis during plant embryogenesis. We identified embryo-lethal mutants of rice (Oryza sativa) in which T-DNAs were inserted in OsMPK6 Embryonic organs were absent because their development was arrested at the globular stage. Similar to observations made with gle4, shootless, and organless, the osmpk6 mutations affected the initial step of cell differentiation. Expression of an apical-basal axis marker gene, OSH1, was reduced in the mutant embryos while that of the radial axes marker genes OsSCR and OsPNH1 was not detected. The signal for ROC1, a protodermal cell marker, was weak at the globular stage and gradually disappeared. Transcript levels of auxin and gibberellin biosynthesis genes were diminished in osmpk6 embryos. In addition, phytoalexin biosynthesis genes were down-regulated in osmpk6 and a major diterpene phytoalexin, momilactone A, did not accumulate in the mutant embryos. These results indicate that OsMPK6 begins to play a critical role during early embryogenesis, especially when the L1 radial axis is being formed.


Assuntos
Diferenciação Celular , Oryza/citologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Diferenciação Celular/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , DNA Bacteriano/genética , Diterpenos/farmacologia , Endosperma/efeitos dos fármacos , Endosperma/genética , Endosperma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mutagênese Insercional/genética , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/embriologia , Fenótipo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Fitoalexinas
3.
Plant Physiol ; 170(3): 1611-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26697896

RESUMO

After meiosis, tapetal cells in the innermost anther wall layer undergo program cell death (PCD)-triggered degradation. This step is essential for microspore development and pollen wall maturation. We identified a key gene, Defective Tapetum Cell Death 1 (DTC1), that controls this degeneration by modulating the dynamics of reactive oxygen species (ROS) during rice male reproduction. Mutants defective in DTC1 exhibit phenotypes of an enlarged tapetum and middle layer with delayed degeneration, causing male sterility. The gene is preferentially expressed in the tapetal cells during early anther development. In dtc1 anthers, expression of genes encoding secretory proteases or lipid transporters is significantly reduced, while transcripts of PCD regulatory genes, e.g. UDT1, TDR1, and EAT1/DTD, are not altered. Moreover, levels of DTC1 transcripts are diminished in udt1, tdr, and eat1 anthers. These results suggest that DTC1 functions downstream of those transcription factor genes and upstream of the genes encoding secretory proteins. DTC1 protein interacts with OsMT2b, a ROS scavenger. Whereas wild-type plants accumulate large amounts of ROS in their anthers at Stage 9 of development, those levels remain low during all stages of development in dtc1 anthers. These findings indicate that DTC1 is a key regulator for tapetum PCD by inhibiting ROS-scavenging activity.


Assuntos
Flores/metabolismo , Metalotioneína/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Apoptose/genética , Flores/genética , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação , Oryza/citologia , Oryza/genética , Oryza/metabolismo , Filogenia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/ultraestrutura , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
4.
Plant Reprod ; 27(4): 169-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223260

RESUMO

Hydration is the first step in pollen germination. However, the process is not well understood. OsMLO12 is highly expressed in mature pollen grains; plants containing alleles caused by transfer DNA insertions do not produce homozygous progeny. Reciprocal crosses between wild-type and OsMLO12/osmlo12 plants showed that the mutant alleles were not transmitted through the male gametophyte. Microscopic observations revealed that, although mutant grains became mature pollen with three nuclei, they did not germinate in vitro or in vivo due to a failure in hydration. The OsMLO12 protein has seven transmembrane motifs, with an N-terminal extracellular region and a C-terminal cytosolic region. We demonstrated that the C-terminal region mediates a calcium-dependent interaction with calmodulin. Our findings suggest that pollen hydration is regulated by MLO12, possibly through an interaction with calmodulin in the cytosol.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Pólen/fisiologia , Motivos de Aminoácidos , Calmodulina/genética , Calmodulina/metabolismo , Genes Reporter , Genótipo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Insercional , Especificidade de Órgãos , Oryza/citologia , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Polinização , Proteínas Recombinantes de Fusão
5.
Plant Physiol ; 161(2): 663-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263792

RESUMO

The pollen wall consists of an exine and an intine. The mechanism underlying its formation is not well understood. Glycosyltransferases catalyze the modification of biological molecules by attaching a single or multiple sugars and play key roles in a wide range of biological processes. We examined the role of GLYCOSYLTRANSFERASE1 (OsGT1) in pollen wall development in rice (Oryza sativa). This gene is highly expressed in mature pollen, and plants containing alleles caused by transfer DNA insertion do not produce homozygous progeny. Reciprocal crosses between OsGT1/osgt1 and the wild type indicated that the mutation leads to a male gametophyte defect. Microscopic analyses revealed that osgt1 pollen developed normally to the pollen mitosis stage but failed to produce mature grains. In osgt1 pollen, intine structure was disrupted. In addition, starch and protein levels were much lower in the mutant grains. Recombinant OsGT1 transferred glucose from UDP-glucose to the third and seventh positions of quercetin, a universal substrate of glycosyltransferases. Consistent with the role of OsGT1, an OsGT1-green fluorescent protein fusion protein was localized to the Golgi apparatus. Taken together, our results suggest that OsGT1 is a Golgi-localized glycosyltransferase essential for intine construction and pollen maturation, providing new insight into male reproductive development.


Assuntos
Glicosiltransferases/genética , Oryza/genética , Proteínas de Plantas/genética , Pólen/genética , Biocatálise , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação , Oryza/enzimologia , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/metabolismo , Pólen/ultraestrutura , Quercetina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Plant J ; 70(2): 256-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22111585

RESUMO

Tapetum development and meiosis play crucial roles in anther development. Here we identified a rice gene, DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1), which controls the early stages of that development. This gene encodes for an endoplasmic reticulum (ER) membrane protein that is present only in cereals. Our T-DNA insertion mutations gave rise to abnormal tapetal formation. Cellular organelles, especially the ER, were underdeveloped, which led to hampered differentiation and degeneration of the tapetum. In addition, the development of pollen mother cells was arrested at the early stages of meiotic prophase I. RNA in-situ hybridization analyses showed that DTM1 transcripts were most abundant in tapetal cells at stages 6 and 7, and moderately in the pollen mother cells and meiocytes. Transcripts of UDT1, which functions in tapetum development during early meiosis, were reduced in dtm1 anthers, as were those of PAIR1, which is involved in chromosome pairing and synapsis during meiosis. However, expression of MSP1 and MEL1, which function in anther wall specification and germ cell division, respectively, was not altered in the dtm1 mutant. Moreover, transcripts of DTM1 were reduced in msp1 mutant anthers, but not in udt1 and pair1 mutants. These results, together with their mutant phenotypes, suggest that DTM1 plays important roles in the ER membrane during early tapetum development, functioning after MSP1 and before UDT1, and also in meiocyte development, after MEL1 and before PAIR1.


Assuntos
Meiose/genética , Oryza/genética , Proteínas de Plantas/genética , Pólen/genética , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Hibridização In Situ , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Protoplastos/citologia , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo
7.
Plant J ; 65(2): 194-205, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21223385

RESUMO

The plant U-box (PUB) protein functions as an E3 ligase to poly-ubiquitinate a target protein for its degradation or post-translational modification. Here, we report functional roles for OsPUB15, which encodes a cytosolic U-box protein in the class-II PUB family. Self-ubiquitination assays showed that bacterially expressed MBP-OsPUB15 protein has E3 ubiquitin ligase activity. A T-DNA insertional mutation in OsPUB15 caused severe growth retardation and a seedling-lethal phenotype. Mutant seeds did not produce primary roots, and their shoot development was significantly delayed. Transgenic plants expressing the OsPUB15 antisense transcript phenocopied these mutant characters. The abnormal phenotypes were partially rescued by two antioxidants, catechin and ascorbic acid. Germinating seeds in the dark also recovered the rootless defect. Levels of H2O2 and oxidized proteins were higher in the knock-out mutant compared with the wild type. OsPUB15 transcript levels were increased upon H2O2, salt and drought stresses; plants overexpressing the gene grew better than the wild type under high salinity. These results indicate that PUB15 is a regulator that reduces reactive oxygen species (ROS) stress and cell death.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Estresse Oxidativo/fisiologia , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Sequência de Bases , Morte Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tolerância ao Sal/fisiologia , Plântula/enzimologia , Plântula/genética , Plântula/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Plant J ; 63(1): 18-30, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20409004

RESUMO

Plants recognize environmental factors to determine flowering time. CONSTANS (CO) plays a central role in the photoperiod flowering pathway of Arabidopsis, and CO protein stability is modulated by photoreceptors. In rice, Hd1, an ortholog of CO, acts as a flowering promoter, and phytochromes repress Hd1 expression. Here, we investigated the functioning of OsCOL4, a member of the CONSTANS-like (COL) family in rice. OsCOL4 null mutants flowered early under short or long days. In contrast, OsCOL4 activation-tagging mutants (OsCOL4-D) flowered late in either environment. Transcripts of Ehd1, Hd3a, and RFT1 were increased in the oscol4 mutants, but reduced in the OsCOL4-D mutants. This finding indicates that OsCOL4 is a constitutive repressor functioning upstream of Ehd1. By comparison, levels of Hd1, OsID1, OsMADS50, OsMADS51, and OsMADS56 transcripts were not significantly changed in oscol4 or OsCOL4-D, suggesting that OsCOL4 functions independently from previously reported flowering pathways. In osphyB mutants, OsCOL4 expression was decreased and osphyB oscol4 double mutants flowered at the same time as the osphyB single mutants, indicating OsCOL4 functions downstream of OsphyB. We also present evidence for two independent pathways through which OsPhyB controls flowering time. These pathways are: (i) night break-sensitive, which does not need OsCOL4; and (ii) night break-insensitive, in which OsCOL4 functions between OsphyB and Ehd1.


Assuntos
Flores/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , RNA de Plantas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Plant Cell Environ ; 32(10): 1412-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19558411

RESUMO

In much of the tropics and subtropics, rice (Oryza sativa L.) is grown under long days (LDs). Therefore, LD must play a major role in inducing flowering signal in rice. However, little is known on LD-dependent flowering signal in the species. We previously reported that OsMADS50, which is highly homologous to Arabidopsis SOC1, functions as a positive regulator for flowering. However, its detailed photoperiodic mechanism was not yet elucidated. Here, we report the functional analysis of OsMADS50 and its closely related gene OsMADS56. Knock-out of OsMADS50 caused a late-flowering phenotype only under LD conditions. Overexpression of OsMADS56 (56OX) also resulted in delayed flowering under LD. In the osmads50 mutants and 56OX transgenic plants, transcripts of Ehd1, Hd3a and RFT1 were reduced, although that of OsLFL1 increased. On the other hand, mRNA levels of OsGI, Hd1, OsId1, OsDof12, Ghd7, Hd6 and SE5 were unchanged. These observations imply that OsMADS50 and OsMADS56 function antagonistically through OsLFL1-Ehd1 in regulating LD-dependent flowering. Yeast two-hybrid and co-immunoprecipitation analyses indicated an interaction between those two proteins as well as their formation of homodimers. These results suggest that OsMADS50 and OsMADS56 may form a complex that regulates downstream target genes.


Assuntos
Flores/fisiologia , Proteínas de Domínio MADS/fisiologia , Oryza/fisiologia , Fotoperíodo , Proteínas de Plantas/fisiologia , DNA Complementar/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , RNA Mensageiro/metabolismo , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA