Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(5)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37871601

RESUMO

Copper selenide (Cu2Se) has attracted significant attention due to the extensive applications in thermoelectric and optoelectronic devices over the last few decades. Among various phase structures of Cu2Se, layered Cu2Se exhibits unique properties, such as purely thermal phase transition, high carrier mobility, high optical absorbance and high photoconductivity. Herein, we carry out a systematic investigation for the electronic structures of layered Cu2Se with several exchange-correlation functionals at different levels through first-principle calculations. It can be found that the electronic structures of layered Cu2Se are highly sensitive to the choice of functionals, and the correction of on-site Coulomb interaction also has a noticeable influence. Comparing with the results calculated with hybrid functional and G0W0method, it is found that the electronic structures calculated with LDA +Ufunctional are relatively accurate for layered Cu2Se. In addition, the in-plane biaxial strain can lead to the transition of electronic properties from metal to semiconductor in the layered Cu2Se, attributed to the change of atomic orbital hybridization. Furthermore, we explore the spin-orbit coupling (SOC) effect of Cu2Se and find that the weak SOC effect on electronic structures mainly results from spatial inversion symmetry of Cu2Se. These findings provide valuable insights for further investigation on this compound.

2.
Phys Chem Chem Phys ; 21(38): 21223-21235, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31339117

RESUMO

The instability of organometal halide perovskites still remains a key obstacle restricting their practical application in gas sensing research. The first step in gas sensing using a semiconductor material is the recognition of a target gas through gas-solid interaction. In the current work, the adsorption mechanisms of MAPbI3-H2O, (MA)2Pb(SCN)2I2-H2O, (MA)2Pb(SCN)2I2-CH3COCH3, (MA)2Pb(SCN)2I2-NO2 and (MA)2Pb(SCN)2I2-O3 have been investigated by large-scale quantum dynamics simulations. The structural changes of the perovskite skeleton, the adsorption energy, and the charge transfer between the semiconductor material and the gas molecules have been analysed. The suitability and effectiveness of quantum dynamics simulations in adsorption mechanism research are firstly validated by comparing the humidity sensing mechanisms of MAPbI3 and (MA)2Pb(SCN)2I2. Different sensing mechanisms of (MA)2Pb(SCN)2I2 to gases with different oxidising properties have been proposed. These sensing mechanisms hopefully lay a foundation for the development of novel perovskite gas sensing materials with enhanced stability, high sensitivity, and high selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA