Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Exp Bot ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753441

RESUMO

Phosphorus nutrition has been known to influence floral transition in plants for a long time, but the underlying mechanism is unclear. Arabidopsis PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long-day and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is resulted from impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find rice PHO1;2, the homology of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.

2.
3.
Nat Plants ; 10(2): 315-326, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38195907

RESUMO

Intracellular inorganic orthophosphate (Pi) distribution and homeostasis profoundly affect plant growth and development. However, its distribution patterns remain elusive owing to the lack of efficient cellular Pi imaging methods. Here we develop a rapid colorimetric Pi imaging method, inorganic orthophosphate staining assay (IOSA), that can semi-quantitatively image intracellular Pi with high resolution. We used IOSA to reveal the alteration of cellular Pi distribution caused by Pi starvation or mutations that alter Pi homeostasis in two model plants, rice and Arabidopsis, and found that xylem parenchyma cells and basal node sieve tube element cells play a critical role in Pi homeostasis in rice. We also used IOSA to screen for mutants altered in cellular Pi homeostasis. From this, we have identified a novel cellular Pi distribution regulator, HPA1/PHO1;1, specifically expressed in the companion and xylem parenchyma cells regulating phloem Pi translocation from the leaf tip to the leaf base in rice. Taken together, IOSA provides a powerful method for visualizing cellular Pi distribution and facilitates the analysis of Pi signalling and homeostasis from the level of the cell to the whole plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Fosfatos/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo
4.
Plant Biotechnol J ; 22(4): 1033-1048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997501

RESUMO

Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.


Assuntos
Oryza , Xanthomonas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Resistência à Doença/genética , Imunidade Vegetal/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
New Phytol ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715479

RESUMO

Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.

6.
Plant Cell Environ ; 46(12): 3680-3703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575022

RESUMO

Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.


Assuntos
Calmodulina , Plantas , Calmodulina/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Cálcio/metabolismo
7.
Bio Protoc ; 13(11): e4692, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37323639

RESUMO

Phosphorus is an essential nutrient for plants. Green algae usually store excess P as polyphosphate (polyP) in the vacuoles. PolyP, a linear chain of three to hundreds of phosphate residues linked by phosphoanhydride bonds, is important for cell growth. Based on the previous method of polyP purification with silica gel columns (Werner et al., 2005; Canadell et al., 2016) in yeast cells, we developed a protocol to purify and determine the total P and polyP in Chlamydomonas reinhardtii by a quick, simplified, and quantitative method. We use hydrochloric acid or nitric acid to digest polyP or total P in dried cells and analyze P content using the malachite green colorimetric method. This method may be applied to other microalgae.

8.
New Phytol ; 239(2): 673-686, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194447

RESUMO

Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.


Assuntos
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Fósforo/metabolismo , Lactonas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Mikrochim Acta ; 190(6): 216, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37173548

RESUMO

Magnetic nanomaterials are widely used, but co-adsorption of impurities will lead to saturation. In this study, the aim was to prepare a magnetic nano-immunosorbent material based on orienting immobilization that can purify and separate 25-hydroxyvitamin D (25OHD) from serum and provides a new concept of sample pretreatment technology. Streptococcus protein G (SPG) was modified on the surface of the chitosan magnetic material, and the antibody was oriented immobilized using the ability of SPG to specifically bind to the Fc region of the monoclonal antibody. The antigen-binding domain was fully exposed and made up for the deficiency of the antibody random immobilization. Compared with the antibody in the random binding format, this oriented immobilization strategy can increase the effective activity of the antibody, and the amount of antibody consumed is saved to a quarter of the former. The new method is simple, rapid, and sensitive, without consuming a lot of organic reagents, and can enrich 25OHD after simple protein precipitation. Combining with liquid chromatography-tandem mass spectrometry (LC-MS/MS), the analysis can be completed in less than 30 min. For 25OHD2 and 25OHD3, the LOD was 0.021 and 0.017 ng mL-1, respectively, and the LOQ was 0.070 and 0.058 ng mL-1, respectively. The results indicated that the magnetic nanomaterials based on oriented immobilization can be applied as an effective, sensitive, and attractive adsorbent to the enrichment of serum 25OHD.


Assuntos
Calcifediol , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais , Fenômenos Magnéticos
10.
Nat Plants ; 9(5): 699-705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012429

RESUMO

Haploid production by outcrossing with inducers is one of the key technologies to revolutionize breeding. A promising approach for developing haploid inducers is by manipulating centromere-specific histone H3 (CENH3/CENPA)1. GFP-tailswap, a CENH3-based inducer, induces paternal haploids at around 30% and maternal haploids at around 5% (ref. 2). However, male sterility of GFP-tailswap makes high-demand maternal haploid induction more challenging. Our study describes a simple and highly effective method for improving both directions of haploid production. Lower temperatures dramatically enhance pollen vigour but reduce haploid induction efficiency, while higher temperatures act oppositely. Importantly, the effects of temperatures on pollen vigour and on haploid induction efficiency are independent. These features enable us to easily induce maternal haploids at around 24.8% by using pollen of inducers grown at lower temperatures to pollinate target plants, followed by switching to high temperatures for haploid induction. Moreover, paternal haploid induction can be simplified and enhanced by growing the inducer at higher temperatures pre- and post-pollination. Our findings provide new clues for developing and using CENH3-based haploid inducers in crops.


Assuntos
Histonas , Melhoramento Vegetal , Haploidia , Temperatura , Melhoramento Vegetal/métodos , Histonas/genética
11.
J Integr Plant Biol ; 65(8): 1874-1889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096648

RESUMO

Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.


Assuntos
Oryza , Fosfatos , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
12.
Mol Plant ; 16(4): 756-774, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36906802

RESUMO

Nitrogen (N) deficiency causes early leaf senescence, resulting in accelerated whole-plant maturation and severely reduced crop yield. However, the molecular mechanisms underlying N-deficiency-induced early leaf senescence remain unclear, even in the model species Arabidopsis thaliana. In this study, we identified Growth, Development and Splicing 1 (GDS1), a previously reported transcription factor, as a new regulator of nitrate (NO3-) signaling by a yeast-one-hybrid screen using a NO3- enhancer fragment from the promoter of NRT2.1. We showed that GDS1 promotes NO3- signaling, absorption and assimilation by affecting the expression of multiple NO3- regulatory genes, including Nitrate Regulatory Gene2 (NRG2). Interestingly, we observed that gds1 mutants show early leaf senescence as well as reduced NO3- content and N uptake under N-deficient conditions. Further analyses indicated that GDS1 binds to the promoters of several senescence-related genes, including Phytochrome-Interacting Transcription Factors 4 and 5 (PIF4 and PIF5) and represses their expression. Interestingly, we found that N deficiency decreases GDS1 protein accumulation, and GDS1 could interact with Anaphase Promoting Complex Subunit 10 (APC10). Genetic and biochemical experiments demonstrated that Anaphase Promoting Complex or Cyclosome (APC/C) promotes the ubiquitination and degradation of GDS1 under N deficiency, resulting in loss of PIF4 and PIF5 repression and consequent early leaf senescence. Furthermore, we discovered that overexpression of GDS1 could delay leaf senescence and improve seed yield and N-use efficiency (NUE) in Arabidopsis. In summary, our study uncovers a molecular framework illustrating a new mechanism underlying low-N-induced early leaf senescence and provides potential targets for genetic improvement of crop varieties with increased yield and NUE.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Nitratos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Plant Physiol Biochem ; 197: 107642, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989993

RESUMO

Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.


Assuntos
Oryza , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Transcriptoma/genética , Nutrientes , Estresse Fisiológico/genética , Raízes de Plantas/metabolismo
14.
Plant Biotechnol J ; 21(7): 1373-1382, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36920783

RESUMO

As a finite and non-renewable resource, phosphorus (P) is essential to all life and crucial for crop growth and food production. The boosted agricultural use and associated loss of P to the aquatic environment are increasing environmental pollution, harming ecosystems, and threatening future global food security. Thus, recovering and reusing P from water bodies is urgently needed to close the P cycle. As a natural, eco-friendly, and sustainable reclamation strategy, microalgae-based biological P recovery is considered a promising solution. However, the low P-accumulation capacity and P-removal efficiency of algal bioreactors restrict its application. Herein, it is demonstrated that manipulating genes involved in cellular P accumulation and signalling could triple the Chlamydomonas P-storage capacity to ~7% of dry biomass, which is the highest P concentration in plants to date. Furthermore, the engineered algae could recover P from wastewater almost three times faster than the unengineered one, which could be directly used as a P fertilizer. Thus, engineering genes involved in cellular P accumulation and signalling in microalgae could be a promising strategy to enhance P uptake and accumulation, which have the potential to accelerate the application of algae for P recovery from the water body and closing the P cycle.


Assuntos
Microalgas , Fósforo , Ecossistema , Água , Águas Residuárias
15.
New Phytol ; 238(4): 1420-1430, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36843251

RESUMO

The basal levels of salicylic acid (SA) vary dramatically among plant species. In the shoot, for example, rice contains almost 100 times higher SA levels than Arabidopsis. Despite its high basal levels, neither the biosynthetic pathway nor the biological functions of SA are well understood in rice. Combining with metabolite analysis, physiological, and genetic approaches, we found that the synthesis of basal SA in rice shoot is dependent on OsAIM1, which encodes a beta-oxidation enzyme in the phenylalanine ammonia-lyase (PAL) pathway. Compromised SA accumulation in the Osaim1 mutant led to a lower shoot temperature than wild-type plants. However, this shoot temperature defect resulted from increased transpiration due to elevated steady-state stomatal aperture in the mutant. Furthermore, the high basal SA level is required for sustained expression of OsWRKY45 to modulate the steady-state stomatal aperture and shoot temperature in rice. Taken together, these results provide the direct genetic evidence for the critical role of the PAL pathway in the biosynthesis of high basal level SA in rice, which plays an important role in the regulation of steady-state stomatal aperture to promote fitness under stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/metabolismo , Ácido Salicílico/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Arabidopsis/metabolismo
16.
Front Plant Sci ; 14: 1068296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798712

RESUMO

Plants are frequently subjected to a broad spectrum of abiotic stresses including drought, salinity and extreme temperatures and have evolved both common and stress-specific responses to promote fitness and survival. Understanding the components and mechanisms that underlie both common and stress-specific responses can enable development of crop plants tolerant to different stresses. Here, we report a rice heat stress-tolerant 1 (hst1) mutant with increased heat tolerance. HST1 encodes the DST transcription factor, which also regulates drought and salinity tolerance. Increased heat tolerance of hst1 was associated with suppressed expression of reactive oxygen species (ROS)-scavenging peroxidases and increased ROS levels, which reduced water loss by decreasing stomatal aperture under heat stress. In addition, increased ROS levels enhanced expression of genes encoding heat shock protein (HSPs) including HSP80, HSP74, HSP58 and small HSPs. HSPs promote stabilization of proteins and protein refolding under heat stress and accordingly mutation of HST1 also improved reproductive traits including pollen viability and seed setting under high temperature. These results broaden the negative roles of DST in abiotic stress tolerance and provide important new insights into DST-regulated tolerance to diverse abiotic stresses through both shared and stress-specific mechanisms.

17.
Trends Plant Sci ; 28(3): 267-270, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36588035

RESUMO

Phosphate (Pi) is involved in numerous metabolic processes and plays a vital role in plant growth. Green plants have evolved intricate molecular bases of Pi signaling to maintain cellular Pi homeostasis. Here, we summarize recent advances in the molecular and structural bases of central Pi signaling and discuss pending questions.


Assuntos
Fosfatos , Plantas , Fosfatos/metabolismo , Plantas/genética , Plantas/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas/genética
18.
Mol Plant ; 16(1): 245-259, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36476805

RESUMO

Salicylic acid (SA) plays a pivotal role in plant response to biotic and abiotic stress. Several core SA signaling regulators and key proteins in SA biosynthesis have been well characterized. However, much remains unknown about the origin, evolution, and early diversification of core elements in plant SA signaling and biosynthesis. In this study, we identified 10 core protein families in SA signaling and biosynthesis across green plant lineages. We found that the key SA signaling receptors, the nonexpresser of pathogenesis-related (NPR) proteins, originated in the most recent common ancestor (MRCA) of land plants and formed divergent groups in the ancestor of seed plants. However, key transcription factors for SA signaling, TGACG motif-binding proteins (TGAs), originated in the MRCA of streptophytes, arguing for the stepwise evolution of core SA signaling in plants. Different from the assembly of the core SA signaling pathway in the ancestor of seed plants, SA exists extensively in green plants, including chlorophytes and streptophyte algae. However, the full isochorismate synthase (ICS)-based SA synthesis pathway was first assembled in the MRCA of land plants. We further revealed that the ancient abnormal inflorescence meristem 1 (AIM1)-based ß-oxidation pathway is crucial for the biosynthesis of SA in chlorophyte algae, and this biosynthesis pathway may have facilitated the adaptation of early-diverging green algae to the high-light-intensity environment on land. Taken together, our findings provide significant insights into the early evolution and diversification of plant SA signaling and biosynthesis pathways, highlighting a crucial role of SA in stress tolerance during plant terrestrialization.


Assuntos
Proteínas de Arabidopsis , Embriófitas , Ácido Salicílico/metabolismo , Plantas/genética , Plantas/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Embriófitas/metabolismo
19.
Plant Commun ; 4(2): 100431, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36071668

RESUMO

Orychophragmus violaceus, referred to as "eryuelan" (February orchid) in China, is an early-flowering ornamental plant. The high oil content and abundance of unsaturated fatty acids in O. violaceus seeds make it a potential high-quality oilseed crop. Here, we generated a whole-genome assembly for O. violaceus using Nanopore and Hi-C sequencing technologies. The assembled genome of O. violaceus was ∼1.3 Gb in size, with 12 pairs of chromosomes. Through investigation of ancestral genome evolution, we determined that the genome of O. violaceus experienced a tetraploidization event from a diploid progenitor with the translocated proto-Calepineae karyotype. Comparisons between the reconstructed subgenomes of O. violaceus identified indicators of subgenome dominance, indicating that subgenomes likely originated via allotetraploidy. O. violaceus was phylogenetically close to the Brassica genus, and tetraploidy in O. violaceus occurred approximately 8.57 million years ago, close in time to the whole-genome triplication of Brassica that likely arose via an intermediate tetraploid lineage. However, the tetraploidization in Orychophragmus was independent of the hexaploidization in Brassica, as evidenced by the results from detailed phylogenetic analyses and comparisons of the break and fusion points of ancestral genomic blocks. Moreover, identification of multi-copy genes regulating the production of high-quality oil highlighted the contributions of both tetraploidization and tandem duplication to functional innovation in O. violaceus. These findings provide novel insights into the polyploidization evolution of plant species and will promote both functional genomic studies and domestication/breeding efforts in O. violaceus.


Assuntos
Brassicaceae , Brassicaceae/genética , Filogenia , Hibridização Genética , Genoma de Planta , Genômica
20.
Plant Cell ; 34(9): 3319-3338, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35640569

RESUMO

Phosphate (Pi) limitation represents a primary constraint on crop production. To better cope with Pi deficiency stress, plants have evolved multiple adaptive mechanisms for phosphorus acquisition and utilization, including the alteration of growth and the activation of Pi starvation signaling. However, how these strategies are coordinated remains largely unknown. Here, we found that the alternative splicing (AS) of REGULATOR OF LEAF INCLINATION 1 (RLI1) in rice (Oryza sativa) produces two protein isoforms: RLI1a, containing MYB DNA binding domain and RLI1b, containing both MYB and coiled-coil (CC) domains. The absence of a CC domain in RLI1a enables it to activate broader target genes than RLI1b. RLI1a, but not RLI1b, regulates both brassinolide (BL) biosynthesis and signaling by directly activating BL-biosynthesis and signaling genes. Both RLI1a and RLI1b modulate Pi starvation signaling. RLI1 and PHOSPHATE STARVATION RESPONSE 2 function redundantly to regulate Pi starvation signaling and growth in response to Pi deficiency. Furthermore, the AS of RLI1-related genes to produce two isoforms for growth and Pi signaling is widely present in both dicots and monocots. Together, these findings indicate that the AS of RLI1 is an important and functionally conserved strategy to orchestrate Pi starvation signaling and growth to help plants adapt to Pi-limitation stress.


Assuntos
Oryza , Fosfatos , Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA