Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; : e2400454, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818744

RESUMO

In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of ß-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.

2.
J Fish Dis ; 44(11): 1753-1763, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34237791

RESUMO

Shrimp is a globally popular seafood. Shrimp farming has been challenged by various infectious diseases that lead to significant economic losses. The prevention of two important shrimp infectious diseases, the acute hepatopancreatic necrosis disease (AHPND) and the Enterocytozoon hepatopenaei (EHP) infection, is highly dependent on early and accurate diagnostic. On-site monitoring of the two diseases in shrimp farming facilities demands point-of-care-testing (POCT) type of diagnostic assays. This study established a duplex recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) combined assay that could simultaneously diagnose the two diseases. The optimized RPA-LFD assay could finish the diagnostic in 35 min with good specificity, and the sensitivity reached 101 and 102 gene copies per reaction for EHP and AHPND, respectively, which were at the same level as the currently available molecular diagnostic assays. Test results of clinical samples showed 100% agreement of this assay with the industrial standard nested polymerase chain reaction (PCR) assays, and samples with both diseases were simultaneously identified. Because of the isothermal 37℃ amplification and the visual reading of the signal on dipsticks, the dependence on equipment is minimal. This duplex RPA-LFD assay is well suited for simultaneous POCT diagnostic of the two important shrimp infectious diseases. Moreover, the principle can be applied to multiplex POCT diagnostic of other infectious diseases in aquaculture.


Assuntos
Enterocytozoon/patogenicidade , Microsporidiose/veterinária , Necrose/veterinária , Técnicas de Amplificação de Ácido Nucleico/veterinária , Penaeidae/microbiologia , Animais , Aquicultura , Primers do DNA , Sondas de DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/veterinária , Sensibilidade e Especificidade , Vibrio parahaemolyticus/patogenicidade
3.
Front Cell Infect Microbiol ; 11: 680728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123877

RESUMO

The pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to more than 117 million reported cases and 2.6 million deaths. Accurate diagnosis technologies are vital for controlling this pandemic. Reverse transcription (RT)-based nucleic acid detection assays have been developed, but the strict sample processing requirement of RT has posed obstacles on wider applications. This study established a ligation and recombinase polymerase amplification (L/RPA) combined assay for rapid detection of SARS-CoV-2 on genes N and ORF1ab targeting the specific biomarkers recommended by the China CDC. Ligase-based strategies usually have a low-efficiency problem on RNA templates. This study has addressed this problem by using a high concentration of the T4 DNA ligase and exploiting the high sensitivity of RPA. Through selection of the ligation probes and optimization of the RPA primers, the assay achieved a satisfactory sensitivity of 101 viral RNA copies per reaction, which was comparable to RT-quantitative polymerase chain reaction (RT-qPCR) and other nucleic acid detection assays for SARS-CoV-2. The assay could be finished in less than 30 min with a simple procedure, in which the requirement for sophisticated thermocycling equipment had been avoided. In addition, it avoided the RT procedure and could potentially ease the requirement for sample processing. Once validated with clinical samples, the L/RPA assay would increase the practical testing availability of SARS-CoV-2. Moreover, the principle of L/RPA has an application potential to the identification of concerned mutations of the virus.


Assuntos
COVID-19 , Recombinases , China , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
4.
Biosensors (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066017

RESUMO

Vibrio cholerae and Vibrio vulnificus are two most reported foodborne Vibrio pathogens related to seafood. Due to global ocean warming and an increase in seafood consumption worldwide, foodborne illnesses related to infection of these two bacteria are growing, leading to food safety issues and economic consequences. Molecular detection methods targeting species-specific genes are effective tools in the fight against bacterial infections for food safety. In this study, a duplex detection biosensor based on isothermal recombinase polymerase amplification (RPA) and a three-segment lateral flow strip (LFS) has been established. The biosensor used lolB gene of Vibrio cholerae and empV gene of Vibrio vulnificus as the detection markers based on previous reports. A duplex RPA reaction for both targets were constructed, and two chemical labels, FITC and DIG, of the amplification products were carefully tested for effective and accurate visualization on the strip. The biosensor demonstrated good specificity and achieved a sensitivity of 101 copies per reaction or one colony forming unit (CFU)/10 g of spiked food for both bacteria. Validation with clinical samples showed results consistent with that of real-time polymerase chain reaction. The detection process was simple and fast with a 30-min reaction at 37 °C and visualization on the strip within 5 min. With little dependence on laboratory settings, this biosensor was suitable for on-site detection, and the duplex system enabled simultaneous detection of the two important foodborne bacteria. Moreover, the principle can be extended to healthcare and food safety applications for other pathogens.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Recombinases , Vibrio cholerae/isolamento & purificação , Vibrio vulnificus/isolamento & purificação , Microbiologia de Alimentos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA