Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37835607

RESUMO

The G-protein-coupled receptor GPR84, activated by medium-chain fatty acids, primarily expressed in macrophages and microglia, is involved in inflammatory responses and retinal development in mammals and amphibians. However, our understanding of its structure, function, tissue expression, and signaling pathways in fish is limited. In this study, we cloned and characterized the coding sequence of GPR84 (ciGPR84) in grass carp. A phylogenetic analysis revealed its close relationship with bony fishes. High expression levels of GPR84 were observed in the liver and spleen. The transfection of HEK293T cells with ciGPR84 demonstrated its responsiveness to medium-chain fatty acids and diindolylmethane (DIM). Capric acid, undecanoic acid, and lauric acid activated ERK and inhibited cAMP signaling. Lauric acid showed the highest efficiency in activating the ERK pathway, while capric acid was the most effective in inhibiting cAMP signaling. Notably, DIM did not activate GPR84 in grass carp, unlike in mammals. These findings provide valuable insights for mitigating chronic inflammation in grass carp farming and warrant further exploration of the role of medium-chain fatty acids in inflammation regulation in this species.

2.
PLoS One ; 14(5): e0215933, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31063465

RESUMO

Considering the divergent temperature habitats and morphological traits of four Percidae species: yellow perch (Perca flavescens), Eurasian perch (Perca fluviatilis), pike perch (Sander lucioperca), and ruffe (Gymnocephalus cernua), we stepped into the transcriptome level to discover genes and mechanisms that drive adaptation to different temperature environments and evolution in body shape. Based on 93,566 to 181,246 annotated unigenes of the four species, we identified 1,117 one-to-one orthologous genes and subsequently constructed the phylogenetic trees that are consistent with previous studies. Together with the tree, the ratios of nonsynonymous to synonymous substitutions presented decreased evolutionary rates from the D. rerio branch to the sub-branch clustered by P. flavescens and P. fluviatilis. The specific 93 fast-evolving genes and 57 positively selected genes in P. flavescens, compared with 22 shared fast-evolving genes among P. fluviatilis, G. cernua, and S. lucioperca, showed an intrinsic foundation that ensure its adaptation to the warmer Great Lakes and farther south, especially in functional terms like "Cul4-RING E3 ubiquitin ligase complex." Meanwhile, the specific 78 fast-evolving genes and 41 positively selected genes in S. lucioperca drew a clear picture of how it evolved to a large and elongated body with camera-type eyes and muscle strength so that it could occupy the highest position in the food web. Overall, our results uncover genetic basis that support evolutionary adaptation of temperature and body shape in four Percid species, and could furthermore assist studies on environmental adaptation in fishes.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Perfilação da Expressão Gênica , Percas/genética , Percas/fisiologia , Temperatura , Animais , Anotação de Sequência Molecular , Percas/anatomia & histologia
3.
Genome ; 62(2): 53-67, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30830800

RESUMO

Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat-high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's), and functional categories indicative of liver dysfunction. A high-fat-high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.


Assuntos
Cyprinidae/genética , Dieta Hiperlipídica/efeitos adversos , Doenças dos Peixes/etiologia , Mitocôndrias Hepáticas/metabolismo , Transcriptoma , Ração Animal/efeitos adversos , Animais , Cyprinidae/metabolismo , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia
4.
Gene ; 624: 6-13, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28431977

RESUMO

The economic and biological significance of blunt snout bream (Megalobrama amblycephala) makes this species important to explore the underlying molecular mechanism of hypoxia response. In the present study, we compared the transcriptional responses to serious hypoxia in skeletal muscle among hypoxia tolerant (MT), sensitive (MS) and control (without hypoxia treatment, MC) M. amblycephala obtained according to the time difference of losing balance after hypoxia treatment. A total of 88,200,889 clean reads were generated and assembled into 44,493 unigenes. Transcriptomic comparison revealed 463 genes differentially expressed among different groups. A similar hypoxia-induced transcription patterns suggested a common hypoxia response involved in cell cycle, p53 signaling pathway, apoptosis, heart contraction and blood circulation. Interesting, four genes, heat shock protein beta-8 (hspb8), cysteine/serine-rich nuclear protein 1 (csrnp1), salt-inducible kinase 1 (sik1), and visinin-like 1a (vsnl1a) were up-regulated in MT Vs MC but down-regulated in MS Vs MC. Additionally, FoxO signaling pathway was significantly enriched only in MT Vs MC. These results not only provided the first insights into the mechanism that muscle tissue coped with the hypoxia stress in cyprinid species, but offered a theory base for breeding of M. amblycephala with hypoxia-resistant traits.


Assuntos
Cipriniformes/genética , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Transcriptoma , Animais , Cipriniformes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipóxia/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo
5.
Sci Rep ; 6: 31050, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27486015

RESUMO

Intermuscular bone (IB), which occurs only in the myosepta of lower teleosts, is attracting more attention because they are difficult to remove and make the fish unpleasant to eat. By gaining a better understanding of the genetic regulation of IB development, an integrated analysis of miRNAs and mRNAs expression profiling was performed on Megalobrama amblycephala. Four key development stages were selected for transcriptome and small RNA sequencing. A number of significantly differentially expressed miRNAs/genes associated with bone formation and differentiation were identified and the functional characteristics of these miRNAs/genes were revealed by GO function and KEGG pathway analysis. These were involved in TGF-ß, ERK and osteoclast differentiation pathways known in the literature to affect bone formation and differentiation. MiRNA-mRNA interaction pairs were detected from comparison of expression between different stages. The function annotation results also showed that many miRNA-mRNA interaction pairs were likely to be involved in regulating bone development and differentiation. A negative regulation effect of two miRNAs was verified through dual luciferase reporter assay. As a unique public resource for gene expression and regulation during the IB development, this study is expected to provide forwards ideas and resources for further biological researches to understand the IBs' development.


Assuntos
Desenvolvimento Ósseo/fisiologia , Cyprinidae/crescimento & desenvolvimento , MicroRNAs/biossíntese , Osteoclastos/metabolismo , RNA Mensageiro/biossíntese , Animais
6.
Int J Mol Sci ; 16(5): 10686-703, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25970753

RESUMO

Intermuscular bone (IB), which occurs only in the myosepta of the lower teleosts, is attracting more attention of researchers due to its particular development and lack of genetic information. MicroRNAs (miRNAs) are emerging as important regulators for biological processes. In the present study, miRNAs from IBs and connective tissue (CT; encircled IBs) from six-month-old Megalobrama amblycephala were characterized and compared. The results revealed the sequences and expression levels of 218 known miRNA genes (belonging to 97 families). Of these miRNAs, 44 known microRNA sequences exhibited significant expression differences between the two libraries, with 24 and 20 differentially-expressed miRNAs exhibiting higher expression in the CT and IBs libraries, respectively. The expressions of 11 miRNAs were selected to validate in nine tissues. Among the high-ranked predicted gene targets, differentiation, cell cycle, metabolism, signal transduction and transcriptional regulation were implicated. The pathway analysis of differentially-expressed miRNAs indicated that they were abundantly involved in regulating the development and differentiation of IBs and CT. This study characterized the miRNA for IBs of teleosts for the first time, which provides an opportunity for further understanding of miRNA function in the regulation of IB development.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Cyprinidae/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Animais , Cyprinidae/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
7.
Fish Shellfish Immunol ; 45(1): 72-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25681750

RESUMO

The blunt snout bream, Megalobrama amblycephala, is a herbivorous freshwater fish species native to China and a major aquaculture species in Chinese freshwater polyculture systems. In recent years, the bacterium Aeromonas hydrophila has been reported to be its pathogen causing great losses of farmed fish. To understand the immune response of the blunt snout bream to A. hydrophila infection, we used the Solexa/Illumina technology to analyze the transcriptomic profile after artificial bacterial infection. Two nonnormalized cDNA libraries were synthesized from tissues collected from control blunt snout bream or those injected with A. hydrophila. After assembly, 155,052 unigenes (average length 692.8 bp) were isolated. All unigenes were annotated using BLASTX relative to several public databases: the National Center for Biotechnology Information nonreduntant (Nr) database, SwissProt, Eukaryotic Orthologous Groups of proteins (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). The sequence similarity (86%) of the assembled unigenes was to zebrafish based on the Nr database. A number of unigenes (n = 30,482) were assigned to three GO categories: biological processes (25,242 unigenes), molecular functions (26,096 unigenes), and cellular components (22,778 unigenes). 20,909 unigenes were classified into 25 KOG categories and 28,744 unigenes were assigned into 315 specific signaling pathways. In total, 238 significantly differentially expressed unigenes (mapped to 125 genes) were identified: 101 upregulated genes and 24 downregulated genes. Another 303 unigenes were mapped to unknown or novel genes. Among the known expressed genes identified, 53 were immune-related genes and were distributed in 71 signaling pathways. The expression patterns of selected up- and downregulated genes from the control and injected groups were determined with reverse transcription-quantitative PCR (RT-qPCR). Microsatellites (n = 10,877), including di-to pentanucleotide repeat motifs, were also identified in the blunt snout bream transcriptome profiles. This study extends our understanding of the immune defense mechanisms of the blunt snout bream against A. hydrophila and provides useful data for further studies of the immunogenetics of this species.


Assuntos
Aeromonas hydrophila/fisiologia , Cyprinidae , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária , Transcriptoma , Animais , Cyprinidae/genética , Cyprinidae/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Biblioteca Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Repetições de Microssatélites , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA