Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904544

RESUMO

Multiple monochromatic x-ray imaging (MMI) is a technique for diagnosing the emission spectra of tracer elements in laser-driven inertial confinement fusion experiments. This study proposes an MMI method that combines a simple pinhole array with a laterally graded multilayer mirror. The method directly obtains multiple monochromatic x-ray images by regulating the multilayer thickness in different mirror positions to compensate for the energy-broadening effect. This paper presents a comprehensive design scheme, the multilayer fabrication and experimental verification of the gradient MMI imaging performance. The experimental results show that the method achieves monochromatic imaging with a spectral resolution of ∼70-90 eV in several keV energy regions. This paper presents a practical diagnostic approach for directly and synchronously capturing the spatial, temporal, and spectral information of laser plasma x rays.

2.
Opt Lett ; 49(9): 2237-2240, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691688

RESUMO

This Letter reports on investigations of novel, to the best of our knowledge, NiV(Ni93V7)/Ti multilayer mirrors for the operation in the wavelength region of 350-450 eV. Such mirrors are promising optical components for the Z-pinch plasma diagnostic. The NiV/Ti multilayers show superior structural and optical performance compared to conventional Ni/Ti multilayers. Replacing Ni with NiV in multilayers decreases interface widths and enhances the contrast of the refractive index between the absorber and spacer layers. The improvement of interface quality contributes to the enhancement in reflectance. Under the grazing incidence of 13°, a peak reflectivity of 25.1% at 429 eV is achieved for NiV/Ti multilayers, while 17.7% at 427 eV for Ni/Ti.

3.
Materials (Basel) ; 15(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234128

RESUMO

Magnetized soft ferromagnetic films with micrometer thickness were studied. A FeSi film, with a total thickness of 2000 nm, separated by 10 nm-thick Ta interlayers, was fabricated using the direct-current magnetron sputtering technique. The thickness of each FeSi layer between adjacent Ta layers was 100 nm. Hysteresis loop measurement was used to characterize the magnetic properties of the layer. X-ray diffraction patterns and high-resolution transmission electron microscopy were used to characterize its texture. The experimental results showed that the FeSi film separated by Ta interlayers exhibited a lower saturation magnetization and a higher coercivity than those of the 1140 nm-thick FeSi film. The insertion of Ta interlayers resulted in the disappearance of the crystal plane of FeSi (221), and better texture of the crystal plane of FeSi (210). The FeSi film exhibited a crystal plane of FeSi (210) with a bcc crystalline structure. The Ta interlayers were partially amorphous, exhibiting crystal plane of Ta (002) and TaSi2 (310). The matching of magnetic properties between interlayers and soft magnetic layers played an important role in maintaining its soft magnetic properties.

4.
Rev Sci Instrum ; 89(10): 103109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399967

RESUMO

For investigating extreme ultraviolet (EUV) damage on optics, a table-top EUV focusing optical system was developed in the laboratory. Based on a modified Schwarzschild objective with a large numerical aperture and a laser-plasma light source, this optical system can generate a focusing spot with the maximum energy density of 2.27 J/cm2 at the focal plane of the objective at the wavelength of 13.5 nm. The structures and the characterized properties of this optical system are presented in this paper. For testing the performance of this setup, single-shot EUV damage tests were carried out on an optical substrate of CaF2 and a gold thin film. The damage thresholds and morphologies of these samples were given and discussed with former research studies.

5.
Rev Sci Instrum ; 89(3): 036105, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604742

RESUMO

Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

6.
Rev Sci Instrum ; 87(10): 103501, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27802711

RESUMO

Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

7.
Rev Sci Instrum ; 84(7): 073705, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902074

RESUMO

A novel EUV four channels normal incidence imaging system for plasma diagnostics of Z-pinch facility was presented in this paper, which consists of four concave mirrors and one convex mirror used for focusing an object onto four different positions with about 30 µm resolution on the same image plane. In addition, this imaging system can work at the energies of 50 eV, 95 eV, 150 eV, and broadband of 50-100 eV by using different multilayer films deposited on the concave and convex mirrors. This instrument, combined with framing camera, can achieve the power of two-dimensional spatial and temporal resolution, as well as the ability to imaging the plasma at the specific temperature. In the paper, the four channels microscope centering at multi-energies was developed.

8.
Rev Sci Instrum ; 82(12): 123702, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225219

RESUMO

Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 µm diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA