Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Genom ; 4(9): 100642, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39216475

RESUMO

Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7+/- knockout combined with Aß42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial for synaptic integrity, astroglial proliferation, and microglial prevalence. Impaired NPY induction decreased BDNF and synaptic density, which are rescuable with ectopic NPY. In induced pluripotent stem cell-derived human neurons exposed to Aß42, ABCA7-/- suppresses NPY. Clinical data showed reduced NPY in AD correlated with elevated Braak stages, genetic variants in NPY associated with AD, and epigenetic changes in NPY, NGFR, and BDNF promoters linked to ABCA7 variants. Therefore, ABCA7-dependent NPY signaling via BDNF-NGFR maintains synaptic integrity, implicating its impairment in increased AD risk through reduced brain resilience.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Neuropeptídeo Y , Transdução de Sinais , Peixe-Zebra , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Humanos , Sinapses/metabolismo , Sinapses/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética
2.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902234

RESUMO

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Astrócitos , Barreira Hematoencefálica , Pericitos , Proteína Smad3 , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Pericitos/metabolismo , Pericitos/patologia , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Idoso , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Idoso de 80 Anos ou mais , Modelos Animais de Doenças
3.
Acta Neuropathol ; 147(1): 70, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598053

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Assuntos
Doença de Alzheimer , Fibronectinas , Idoso , Animais , Humanos , Doença de Alzheimer/genética , Fibronectinas/genética , Variação Genética/genética , Gliose , Peixe-Zebra
4.
Nat Commun ; 15(1): 1758, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413582

RESUMO

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Assuntos
Distrofias Musculares , Criança , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
5.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260431

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.

6.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260408

RESUMO

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

7.
NPJ Regen Med ; 8(1): 33, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429840

RESUMO

Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.

8.
Indian J Pediatr ; 89(7): 682-691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35239159

RESUMO

OBJECTIVES: To determine the demographic, clinical, and genetic profile of Turkish Caucasian PCD cases. METHODS: Targeted next-generation sequencing (t-NGS) of 46 nuclear genes was performed in 21 unrelated PCD cases. Sanger sequencing confirmed of potentially disease-related variations, and genotype-phenotype correlations were evaluated. RESULTS: Disease-related variations were identified in eight different genes (CCDC39, CCDC40, CCDC151, DNAAF2, DNAAF4, DNAH11, HYDIN, RSPH4A) in 52.4% (11/21) of the cases. The frequency of variations for CCDC151, DNAH11, and DNAAF2 genes which were highly mutated genes in the cohort was 18% in 11 patients. Each of the remaining gene variations was detected once (9%) in different patients. The variants, p.R482fs*12 in CCDC151, p.E216* in DNAAF2, p.I317* in DNAAF4, p.L318P and p.R1865* in DNAH11, and p.N1505D and p.L1167P in HYDIN gene were identified as novel variations. Interestingly, varying phenotypic findings were identified even in patients with the same mutation, which once again confirmed that PCD has a high phenotypic heterogeneity and shows individual differences. CONCLUSION: This t-NGS panel is potentially helpful for exact and rapid identification of reported/novel PCD-disease-causing variants to establish the molecular diagnosis of ciliary diseases.


Assuntos
Síndrome de Kartagener , Estudos de Coortes , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutação
10.
Am J Hum Genet ; 108(7): 1301-1317, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038740

RESUMO

Human C2orf69 is an evolutionarily conserved gene whose function is unknown. Here, we report eight unrelated families from which 20 children presented with a fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. C2ORF69 bears homology to esterase enzymes, and orthologs can be found in most eukaryotic genomes, including that of unicellular phytoplankton. We found that endogenous C2ORF69 (1) is loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. We show that CRISPR-Cas9-mediated inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures, which is preceded by persistent brain inflammation. Collectively, our results delineate an autoinflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems.


Assuntos
Encefalite/genética , Doenças Mitocondriais/genética , Animais , Evolução Biológica , Sistemas CRISPR-Cas , Linhagem Celular , Encefalite/mortalidade , Feminino , Genes Recessivos , Glicogênio/metabolismo , Humanos , Inflamação/genética , Masculino , Proteínas de Membrana/genética , Doenças Mitocondriais/mortalidade , Linhagem , Convulsões/genética , Convulsões/mortalidade , Peixe-Zebra/genética
11.
Turk Thorac J ; 22(6): 426-431, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35110256

RESUMO

OBJECTIVE: To compare class I/II cystic fibrosis transmembrane conductance regulator (CFTR) mutations to class III-V mutations with regards to cystic fibrosis disease severity markers in children. MATERIAL AND METHODS: This study was designed as a cross-sectional study in Antalya province, located on the south coast of Turkey. The study included 38 cystic fibrosis patients aged between 0.6 and 18 years. The CFTR genotype of the patients was categorized into 2 groups based on the presence or absence of class I or class II mutations in any of the alleles. Group I comprised 8 homozygous, 8 with unknown alleles, and 8 compound heterozygous patients, and group II comprised 11 homozygous and 3 compound heterozygous patients. The groups were analyzed in respect of cystic fibrosis disease severity markers, such as spirometry, ShwachmanKulczycki score, body mass index (BMI), sweat chloride concentration, chronic Pseudomonas aeruginosa infection, annual exacerbation frequency, and severe exacerbations requiring hospitalization during the previous year. RESULTS: In the comparison of group I and group II patients, a significant difference was observed in pancreas insufficiency (83.3% vs. 35.7%; P = .005), chronic P. aeruginosa infection (58.3% vs. 7.1%; P = .002), cough severity score (1.7 ± 1.1 vs. 0.9 ± 1.5; P = .029), number of severe exacerbations requiring hospitalization during the previous year (0.9 ± 1 vs. 0.3 ± 0.8; P = .03), and sweat chloride levels (76.7 ± 15.2 vs. 61 ± 22.3; P = .02). All these values were higher in group I patients. The mean BMI values (15.8 ± 2.2 vs. 17.6 ± 2.8; P = .03) were lower in group I patients. CONCLUSION: There seems to be a difference between class I/II CFTR mutations and class III-V mutations on the severity of the disease in cystic fibrosis patients.

12.
Pediatr Neurol ; 99: 7-15, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31421914

RESUMO

Craniosynostosis is a pathologic craniofacial disorder and is defined as the premature fusion of one or more cranial (calvarial) sutures. Cranial sutures are fibrous joints consisting of nonossified mesenchymal cells that play an important role in the development of healthy craniofacial skeletons. Early fusion of these sutures results in incomplete brain development that may lead to complications of several severe medical conditions including seizures, brain damage, mental delay, complex deformities, strabismus, and visual and breathing problems. As a congenital disease, craniosynostosis has a heterogeneous origin that can be affected by genetic and epigenetic alterations, teratogens, and environmental factors and make the syndrome highly complex. To date, approximately 200 syndromes have been linked to craniosynostosis. In addition to being part of a syndrome, craniosynostosis can be nonsyndromic, formed without any additional anomalies. More than 50 nuclear genes that relate to craniosynostosis have been identified. Besides genetic factors, epigenetic factors like microRNAs and mechanical forces also play important roles in suture fusion. As craniosynostosis is a multifactorial disorder, evaluating the craniosynostosis syndrome requires and depends on all the information obtained from clinical findings, genetic analysis, epigenetic or environmental factors, or gene modulators. In this review, we will focus on embryologic and genetic studies, as well as epigenetic and environmental studies. We will discuss published studies and correlate the findings with unknown aspects of craniofacial disorders.


Assuntos
Craniossinostoses , Animais , Suturas Cranianas/embriologia , Craniossinostoses/embriologia , Craniossinostoses/epidemiologia , Craniossinostoses/genética , Craniossinostoses/cirurgia , Modelos Animais de Doenças , Doenças em Gêmeos/genética , Epigênese Genética , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Idade Paterna , Prevalência , Pequeno RNA não Traduzido/genética , Transdução de Sinais/fisiologia , Crânio/embriologia , Síndrome
13.
Am J Med Genet A ; 179(11): 2241-2245, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353793

RESUMO

Craniosynostosis consists of premature fusion of one or more cranial sutures and can be seen as part of a syndrome or diagnosed as nonsyndromic (isolated). Although more than 180 craniosynostosis syndromes have been identified, 70% of the cases are diagnosed as nonsyndromic. On the other hand, genetic causes of the cases are mostly unknown and the overall frequency of the genetic diagnosis is around 25%. In this study, we used targeted Next Generation Sequencing (NGS) analysis to identify the genetic variations of two craniosynostosis cases. We have identified two different truncating mutations, a known NM_207036.1:c.778_779delAT;p.(Met260Valfs*5) and a novel NM_207036.1:c.1102_1108delTCACCTC;p.(Pro369Glnfs*26) TCF12 variants. Additionally, upon physical examination of these two cases, we have observed some shared clinical similarities as well as differences such as bilateral simian crease and hidden cleft palate. This is the first study that reports the TCF12 mutations in Turkish patients with coronal suture synostosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Mutação , Alelos , Substituição de Aminoácidos , Pré-Escolar , Feminino , Testes Genéticos , Genótipo , Humanos , Fenótipo , Radiografia , Turquia
14.
Genome Med ; 11(1): 38, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31203817

RESUMO

BACKGROUND: Diagnosis of primary immunodeficiencies (PIDs) is complex and cumbersome yet important for the clinical management of the disease. Exome sequencing may provide a genetic diagnosis in a significant number of patients in a single genetic test. METHODS: In May 2013, we implemented exome sequencing in routine diagnostics for patients suffering from PIDs. This study reports the clinical utility and diagnostic yield for a heterogeneous group of 254 consecutively referred PID patients from 249 families. For the majority of patients, the clinical diagnosis was based on clinical criteria including rare and/or unusual severe bacterial, viral, or fungal infections, sometimes accompanied by autoimmune manifestations. Functional immune defects were interpreted in the context of aberrant immune cell populations, aberrant antibody levels, or combinations of these factors. RESULTS: For 62 patients (24%), exome sequencing identified pathogenic variants in well-established PID genes. An exome-wide analysis diagnosed 10 additional patients (4%), providing diagnoses for 72 patients (28%) from 68 families altogether. The genetic diagnosis directly indicated novel treatment options for 25 patients that received a diagnosis (34%). CONCLUSION: Exome sequencing as a first-tier test for PIDs granted a diagnosis for 28% of patients. Importantly, molecularly defined diagnoses indicated altered therapeutic options in 34% of cases. In addition, exome sequencing harbors advantages over gene panels as a truly generic test for all genetic diseases, including in silico extension of existing gene lists and re-analysis of existing data.


Assuntos
Sequenciamento do Exoma/métodos , Testes Genéticos/métodos , Doenças da Imunodeficiência Primária/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Testes Genéticos/normas , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças da Imunodeficiência Primária/diagnóstico , Sensibilidade e Especificidade , Sequenciamento do Exoma/normas
15.
Bol. méd. Hosp. Infant. Méx ; 76(1): 44-48, ene.-feb. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1038890

RESUMO

Abstract Background: Craniosynostosis is described as the premature fusion of cranial sutures that belongs to a group of alterations which produce an abnormal phenotype. Case report: Two unrelated female patients with clinical findings of Apert syndrome-characterized by acrocephaly, prominent frontal region, flat occiput, ocular proptosis, hypertelorism, down-slanted palpebral fissures, midfacial hypoplasia, high-arched or cleft palate, short neck, cardiac anomalies and symmetrical syndactyly of the hands and feet-are present. In both patients, a heterozygous missense mutation (c.755C>G, p.Ser252Trp) in the FGFR2 gene was identified. Conclusions: Two cases of Apert syndrome are described. It is important to recognize this uncommon entity through clinical findings, highlight interdisciplinary medical evaluation, and provide timely genetic counseling for the family.


Resumen Introducción: Las craneosinostosis se describen como la fusión prematura de las suturas craneales y resultan un grupo de alteraciones que producen un fenotipo anormal. Caso clínico: En este informe de casos se presentan dos pacientes de sexo femenino no emparentadas con hallazgos clínicos del síndrome de Apert, caracterizado por acrocefalia, región frontal prominente, occipucio plano, proptosis ocular, hipertelorismo, fisuras palpebrales hacia abajo, hipoplasia mediofacial, paladar alto o hendido, cuello corto, cardiopatía congénita y sindactilia simétrica en manos y pies. En ambas pacientes se identificó una mutación cambio de sentido en heterocigosis (c.755C>G, p.Ser252Trp) en el gen FGFR2. Conclusiones: Se presentan dos casos de síndrome de Apert. Es importante reconocer a través de los hallazgos clínicos esta entidad infrecuente, resaltar la evaluación médica interdisciplinaria y proporcionar un oportuno asesoramiento genético a la familia.


Assuntos
Feminino , Humanos , Lactente , Recém-Nascido , Acrocefalossindactilia/fisiopatologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Acrocefalossindactilia/diagnóstico , Acrocefalossindactilia/genética , Mutação de Sentido Incorreto
16.
Bol Med Hosp Infant Mex ; 76(1): 44-48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30657466

RESUMO

Background: Craniosynostosis is described as the premature fusion of cranial sutures that belongs to a group of alterations which produce an abnormal phenotype. Case report: Two unrelated female patients with clinical findings of Apert syndrome-characterized by acrocephaly, prominent frontal region, flat occiput, ocular proptosis, hypertelorism, down-slanted palpebral fissures, midfacial hypoplasia, high-arched or cleft palate, short neck, cardiac anomalies and symmetrical syndactyly of the hands and feet-are present. In both patients, a heterozygous missense mutation (c.755C>G, p.Ser252Trp) in the FGFR2 gene was identified. Conclusions: Two cases of Apert syndrome are described. It is important to recognize this uncommon entity through clinical findings, highlight interdisciplinary medical evaluation, and provide timely genetic counseling for the family.


Introducción: Las craneosinostosis se describen como la fusión prematura de las suturas craneales y resultan un grupo de alteraciones que producen un fenotipo anormal. Caso clínico: En este informe de casos se presentan dos pacientes de sexo femenino no emparentadas con hallazgos clínicos del síndrome de Apert, caracterizado por acrocefalia, región frontal prominente, occipucio plano, proptosis ocular, hipertelorismo, fisuras palpebrales hacia abajo, hipoplasia mediofacial, paladar alto o hendido, cuello corto, cardiopatía congénita y sindactilia simétrica en manos y pies. En ambas pacientes se identificó una mutación cambio de sentido en heterocigosis (c.755C>G, p.Ser252Trp) en el gen FGFR2. Conclusiones: Se presentan dos casos de síndrome de Apert. Es importante reconocer a través de los hallazgos clínicos esta entidad infrecuente, resaltar la evaluación médica interdisciplinaria y proporcionar un oportuno asesoramiento genético a la familia.


Assuntos
Acrocefalossindactilia/fisiopatologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Acrocefalossindactilia/diagnóstico , Acrocefalossindactilia/genética , Feminino , Humanos , Lactente , Recém-Nascido , Mutação de Sentido Incorreto
17.
Am J Med Genet A ; 176(9): 1976-1980, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30088857

RESUMO

The bones of the skull are held together by fibrous joints called sutures. Premature fusion of these sutures leads to a pathologic condition called as craniosynostosis. Although at least 50 nuclear genes including FGFR2, TWIST1, TCF12, and SMAD6 were identified as causative of craniosynostosis; only 25% of the patients can be genetically diagnosed. Here, we report a 3-year-old Turkish Caucasian boy with sagittal craniosynostosis with a de novo loss-of-function mutation in exon 4 of the AXIN2 gene for the first time. The patient has frontal bossing, high anterior hair line, depressed nasal bridge, bilateral epicanthus and low set ears which are correlated with his scaphocephaly. As a negative regulator of the Wnt signaling pathway which is one of the key modulators of craniosynostosis syndrome, it has been shown in model organisms that Axin2 orchestrates the regulation of beta-catenin especially in the intramembranous ossification process. This clinical report adds value to the literature that AXIN2 gene mutations could be a potential cause in human calvarial malformations, especially for the sagittal synostosis.


Assuntos
Proteína Axina/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Estudos de Associação Genética , Mutação , Fenótipo , Alelos , Pré-Escolar , Cromossomos Humanos Par 17 , Análise Mutacional de DNA , Estudos de Associação Genética/métodos , Genótipo , Humanos , Cariótipo , Mutação com Perda de Função , Masculino , Linhagem , Turquia
18.
Hum Genet ; 137(6-7): 479-486, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29982980

RESUMO

While recent studies have revealed a substantial portion of the genes underlying human hearing loss, the extensive genetic landscape has not been completely explored. Here, we report a loss-of-function variant (c.72delA) in MPZL2 in three unrelated multiplex families from Turkey and Iran with autosomal recessive nonsyndromic hearing loss. The variant co-segregates with moderate sensorineural hearing loss in all three families. We show a shared haplotype flanking the variant in our families implicating a single founder. While rare in other populations, the allele frequency of the variant is ~ 0.004 in Ashkenazi Jews, suggesting that it may be an important cause of moderate hearing loss in that population. We show that Mpzl2 is expressed in mouse inner ear, and the protein localizes in the auditory inner and outer hair cells, with an asymmetric subcellular localization. We thus present MPZL2 as a novel gene associated with sensorineural hearing loss.


Assuntos
Moléculas de Adesão Celular/genética , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Neurossensorial/genética , Animais , Surdez/fisiopatologia , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/fisiopatologia , Feminino , Frequência do Gene , Genes Recessivos , Células Ciliadas Auditivas Internas/patologia , Haplótipos/genética , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Irã (Geográfico)/epidemiologia , Judeus/genética , Masculino , Camundongos , Mutação , Linhagem , Células de Schwann/patologia , Turquia
19.
Mol Cytogenet ; 11: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434669

RESUMO

BACKGROUND: Little is known about the genetic contribution to Müllerian aplasia, better known to patients as Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Mutations in two genes (WNT4 and HNF1B) account for a small number of patients, but heterozygous copy number variants (CNVs) have been described. However, the significance of these CNVs in the pathogenesis of MRKH is unknown, but suggests possible autosomal dominant inheritance. We are not aware of CNV studies in consanguineous patients, which could pinpoint genes important in autosomal recessive MRKH. We therefore utilized SNP/CGH microarrays to identify CNVs and define regions of homozygosity (ROH) in Anatolian Turkish MRKH patients. RESULTS: Five different CNVs were detected in 4/19 patients (21%), one of which is a previously reported 16p11.2 deletion containing 32 genes, while four involved smaller regions each containing only one gene. Fourteen of 19 (74%) of patients had parents that were third degree relatives or closer. There were 42 regions of homozygosity shared by at least two MRKH patients which was spread throughout most chromosomes. Of interest, eight candidate genes suggested by human or animal studies (RBM8A, CMTM7, CCR4, TRIM71, CNOT10, TP63, EMX2, and CFTR) reside within these ROH. CONCLUSIONS: CNVs were found in about 20% of Turkish MRKH patients, and as in other studies, proof of causation is lacking. The 16p11.2 deletion seen in mixed populations is also identified in Turkish MRKH patients. Turkish MRKH patients have a higher likelihood of being consanguineous than the general Anatolian Turkish population. Although identified single gene mutations and heterozygous CNVs suggest autosomal dominant inheritance for MRKH in much of the western world, regions of homozygosity, which could contain shared mutant alleles, make it more likely that autosomal recessively inherited causes will be manifested in Turkish women with MRKH.

20.
Fetal Pediatr Pathol ; 34(5): 287-306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26376227

RESUMO

Skeletal dysplasias (SDs) constitute a group of heterogeneous disorders affecting growth morphology of the chondro-osseous tissues. Prenatal diagnosis of SD is a considerable clinical challenge due to phenotypic variability. We performed a retrospective analysis of the fetal autopsies series conducted between January 2006 and December 2012 at our center. SD was detected in 54 (10%) out of 542 fetal autopsy cases which included; 11.1% thanatophoric dysplasia (n = 6), 7.4% achondroplasia (n = 4), 3.7% osteogenesis imperfect (n = 2), 1.9% Jarcho-Levin Syndrome (n = 1), 1.9% arthrogryposis (n = 1), 1.9% Dyggve-Melchior-Clausen syndrome (n = 1), 72.1% of dysostosis cases (n = 39). All SD cases were diagnosed by ultrasonography. In 20 of the cases, amniocentesis was performed, 4 cases underwent molecular genetic analyses. Antenatal identification of dysplasia is important in the management of pregnancy and in genetic counseling. Our data analysis showed that SD is usually detected clinically after the 20th gestational week. Genetic analyses for SD may provide early diagnosis and management.


Assuntos
Doenças do Desenvolvimento Ósseo/patologia , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Autopsia , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/genética , Osso e Ossos/anormalidades , Feminino , Doenças Fetais , Humanos , Masculino , Gravidez , Radiografia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA